57 research outputs found

    Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow.

    Get PDF
    The hundreds of cichlid fish species in Lake Malawi constitute the most extensive recent vertebrate adaptive radiation. Here we characterize its genomic diversity by sequencing 134 individuals covering 73 species across all major lineages. The average sequence divergence between species pairs is only 0.1-0.25%. These divergence values overlap diversity within species, with 82% of heterozygosity shared between species. Phylogenetic analyses suggest that diversification initially proceeded by serial branching from a generalist Astatotilapia-like ancestor. However, no single species tree adequately represents all species relationships, with evidence for substantial gene flow at multiple times. Common signatures of selection on visual and oxygen transport genes shared by distantly related deep-water species point to both adaptive introgression and independent selection. These findings enhance our understanding of genomic processes underlying rapid species diversification, and provide a platform for future genetic analysis of the Malawi radiation

    Turning the Orogenic Switch: Slab‐Reversal in the Eastern Alps Recorded by Low‐Temperature Thermochronology

    Get PDF
    Many convergent orogens, such as the eastern European Alps, display an asymmetric doubly vergent wedge geometry. In doubly vergent orogens, deepest exhumation occurs above the retro‐wedge. Deep‐seismic interpretations depict the European plate dipping beneath the Adriatic, suggesting the pro‐wedge location on the north side of the orogen. Our new thermochronometer data across the Eastern Alps confirm distinct shifts in the locus of exhumation associated with orogen‐scale structural reorganizations. Most importantly, we find a general Mid‐Miocene shift in exhumation (in the Tauern Window and the Southern Alps) and focus of modern seismicity across the Southern Alps. Taken together, these observations suggest a subduction polarity reversal at least since the Mid‐Miocene such that the present‐day pro‐wedge is located on the south side of the Alps. We propose a transient tectonic state of a slow‐and‐ongoing slab reversal coeval with motion along the Tauern Ramp, consistent with a present‐day northward migration of drainage divides.Plain Language Summary: When tectonic plates collide, they bend downwards and form two lithospheric wedges dipping in opposite directions, such as in the Eastern Alps. We present new crustal cooling data along a transect in the Eastern Alps confirming that surface rocks across the central Tauern Window originated from the deepest structural levels along the transect. South of the Tauern Window rocks were exhumed from higher depths compared to those north of it and were exhumed more recently, while seismic activity is also focused across the Southern Alps. These observations suggest a subduction polarity reversal because they are inconsistent with the original southern and northern locations of overriding and subducting plates, respectively, >15 million years ago. This interpretation is contrary to lithosphere‐scale tomography that shows no change in subduction polarity. Therefore, we propose a transient tectonic state, that is, a slow‐and‐ongoing subduction polarity reversal that initiated when Tauern Window rocks began their steep ascent to the surface along a deep‐seated fault known as the Tauern Ramp. This study bridges observations in the mantle, crust and on the surface over geologic time.Key Points: Thermochronologic data in the Eastern Alps is consistent with a transient tectonic state toward complete slab reversal. The pro‐wedge has switched from north to south of the Periadriatic Fault along TRANSALP. Mid‐Miocene motion along the Tauern Ramp is the consequence of slab‐reversal.Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/50110000165
    • 

    corecore