2,222 research outputs found
Definition of the stimulated emission threshold in high- nanoscale lasers through phase-space reconstruction
Nanoscale lasers sustain few optical modes so that the fraction of
spontaneous emission funnelled into the useful (lasing) mode is high
(of the order of few 10) and the threshold, which traditionally
corresponds to an abrupt kink in the light in- light out curve, becomes
ill-defined. We propose an alternative definition of the threshold, based on
the dynamical response of the laser, which is valid even for lasers.
The laser dynamics is analyzed through a reconstruction of its phase-space
trajectory for pulsed excitation. Crossing the threshold brings about a change
in the shape of the trajectory and in the area contained in it. An unambiguous
definition of the threshold in terms of this change is shown theoretically and
illustrated experimentally in a photonic crystal laser
The effect of a diet supplement containing S-acetyl-glutathione (SAG) and other antioxidant natural ingredients on glutathione peroxidase in healthy dogs: a pilot study
Oxidative stress is common in several human and veterinary conditions and it is associated to alteration of the glutathione peroxidase (GPx) level. GPx is an enzyme present in erythrocytes, kidney, and liver and it has a role in protecting against oxidative damage. In this randomised double-blinded control trial on healthy dogs, we present findings indicating that the administration for a total of 35 days of a supplement containing S-acetyl-glutathione (SAG) alongside other antioxidant natural ingredients, leads to an increase in the GPx level. Furthermore, the supplement positively changes liver blood parameters, even in healthy dogs. These preliminary results hold promise for conducting new studies using the same supplement on dogs affected by liver conditions, thereby confirming its antioxidant effects and the potential improvement of altered blood parameters
Comparison of Recoil-Induced Resonances (RIR) and Collective Atomic Recoil Laser (CARL)
The theories of recoil-induced resonances (RIR) [J. Guo, P. R. Berman, B.
Dubetsky and G. Grynberg, Phys. Rev. A {\bf 46}, 1426 (1992)] and the
collective atomic recoil laser (CARL) [ R. Bonifacio and L. De Salvo, Nucl.
Instrum. Methods A {\bf 341}, 360 (1994)] are compared. Both theories can be
used to derive expressions for the gain experienced by a probe field
interacting with an ensemble of two-level atoms that are simultaneously driven
by a pump field. It is shown that the RIR and CARL formalisms are equivalent.
Differences between the RIR and CARL arise because the theories are typically
applied for different ranges of the parameters appearing in the theory. The RIR
limit considered in this paper is , while the CARL
limit is , where is the magnitude of the
difference of the wave vectors of the pump and probe fields, is the
width of the atomic momentum distribution and is a recoil
frequency. The probe gain for a probe-pump detuning equal to zero is analyzed
in some detail, in order to understand how the gain arises in a system which,
at first glance, might appear to have vanishing gain. Moreover, it is shown
that the calculations, carried out in perturbation theory have a range of
applicability beyond the recoil problem. Experimental possibilities for
observing CARL are discussed.Comment: 16 pages, 1 figure. Submitted to Physical Review
Creation, doubling, and splitting, of vortices in intracavity second harmonic generation
We demonstrate generation and frequency doubling of unit charge vortices in a
linear astigmatic resonator. Topological instability of the double charge
harmonic vortices leads to well separated vortex cores that are shown to
rotate, and become anisotropic, as the resonator is tuned across resonance
MicroRNA-218 instructs proper assembly of hippocampal networks
The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN
A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed
in order to definitely clarify the possible existence of additional neutrino
states, as pointed out by neutrino calibration source experiments, reactor and
accelerator experiments and measure the corresponding oscillation parameters.
The experiment is based on two identical LAr-TPCs complemented by magnetized
spectrometers detecting electron and muon neutrino events at Far and Near
positions, 1600 m and 300 m from the proton target, respectively. The ICARUS
T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of
imaging mass, now running in the LNGS underground laboratory, will be moved at
the CERN Far position. An additional 1/4 of the T600 detector (T150) will be
constructed and located in the Near position. Two large area spectrometers will
be placed downstream of the two LAr-TPC detectors to perform charge
identification and muon momentum measurements from sub-GeV to several GeV
energy range, greatly complementing the physics capabilities. This experiment
will offer remarkable discovery potentialities, collecting a very large number
of unbiased events both in the neutrino and antineutrino channels, largely
adequate to definitely settle the origin of the observed neutrino-related
anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open
Symposium Preparatory Group, Kracow 10-12 September 201
The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)
The observation of neutrinoless double-beta decay (0)
would show that lepton number is violated, reveal that neutrinos are Majorana
particles, and provide information on neutrino mass. A discovery-capable
experiment covering the inverted ordering region, with effective Majorana
neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with
excellent energy resolution and extremely low backgrounds, at the level of
0.1 count /(FWHMtyr) in the region of the signal. The
current generation Ge experiments GERDA and the MAJORANA DEMONSTRATOR
utilizing high purity Germanium detectors with an intrinsic energy resolution
of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in
the 0 signal region of all 0
experiments. Building on this success, the LEGEND collaboration has been formed
to pursue a tonne-scale Ge experiment. The collaboration aims to develop
a phased 0 experimental program with discovery potential
at a half-life approaching or at years, using existing resources as
appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017
- …