1,135 research outputs found

    Surface Comparison with Mass Transportation

    Full text link
    We use mass-transportation as a tool to compare surfaces (2-manifolds). In particular, we determine the "similarity" of two given surfaces by solving a mass-transportation problem between their conformal densities. This mass transportation problem differs from the standard case in that we require the solution to be invariant under global M\"obius transformations. Our approach provides a constructive way of defining a metric in the abstract space of simply-connected smooth surfaces with boundary (i.e. surfaces of disk-type); this metric can also be used to define meaningful intrinsic distances between pairs of "patches" in the two surfaces, which allows automatic alignment of the surfaces. We provide numerical experiments on "real-life" surfaces to demonstrate possible applications in natural sciences

    Conformal Wasserstein distances: comparing surfaces in polynomial time

    Get PDF
    We present a constructive approach to surface comparison realizable by a polynomial-time algorithm. We determine the "similarity" of two given surfaces by solving a mass-transportation problem between their conformal densities. This mass transportation problem differs from the standard case in that we require the solution to be invariant under global M\"{o}bius transformations. We present in detail the case where the surfaces to compare are disk-like; we also sketch how the approach can be generalized to other types of surfaces.Comment: 23 pages, 3 figure

    Tetrisation of triangular meshes and its application in shape blending

    Full text link
    The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile technique for morphing, surface modelling, and mesh editing. We discuss an improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh in 3D space, we introduce a method to associate a tetrahedral structure, which encodes the geometry of the original mesh. 2. We use a Lie algebra based method to interpolate local transformation, which provides better handling of rotation with large angle. 3. We propose a new error function to compile local transformations into a global piecewise linear map, which is rotation invariant and easy to minimise. We implemented a shape blender based on our algorithm and its MIT licensed source code is available online

    Algorithms to automatically quantify the geometric similarity of anatomical surfaces

    Full text link
    We describe new approaches for distances between pairs of 2-dimensional surfaces (embedded in 3-dimensional space) that use local structures and global information contained in inter-structure geometric relationships. We present algorithms to automatically determine these distances as well as geometric correspondences. This is motivated by the aspiration of students of natural science to understand the continuity of form that unites the diversity of life. At present, scientists using physical traits to study evolutionary relationships among living and extinct animals analyze data extracted from carefully defined anatomical correspondence points (landmarks). Identifying and recording these landmarks is time consuming and can be done accurately only by trained morphologists. This renders these studies inaccessible to non-morphologists, and causes phenomics to lag behind genomics in elucidating evolutionary patterns. Unlike other algorithms presented for morphological correspondences our approach does not require any preliminary marking of special features or landmarks by the user. It also differs from other seminal work in computational geometry in that our algorithms are polynomial in nature and thus faster, making pairwise comparisons feasible for significantly larger numbers of digitized surfaces. We illustrate our approach using three datasets representing teeth and different bones of primates and humans, and show that it leads to highly accurate results.Comment: Changes with respect to v1, v2: an Erratum was added, correcting the references for one of the three datasets. Note that the datasets and code for this paper can be obtained from the Data Conservancy (see Download column on v1, v2

    Local syzygies of multiplier ideals

    Full text link
    In recent years, multiplier ideals have found many applications in local and global algebraic geometry. Because of their importance, there has been some interest in the question of which ideals on a smooth complex variety can be realized as multiplier ideals. Other than integral closure no local obstructions have been known up to now, and in dimension two it was established by Favre-Jonsson and Lipman-Watanabe that any integrally closed ideal is locally a multiplier ideal. We prove the somewhat unexpected result that multiplier ideals in fact satisfy some rather strong algebraic properties involving higher syzygies. It follows that in dimensions three and higher, multiplier ideals are very special among all integrally closed ideals.Comment: 8 page

    On the Complexity of Searching in Trees: Average-case Minimization

    Full text link
    We focus on the average-case analysis: A function w : V -> Z+ is given which defines the likelihood for a node to be the one marked, and we want the strategy that minimizes the expected number of queries. Prior to this paper, very little was known about this natural question and the complexity of the problem had remained so far an open question. We close this question and prove that the above tree search problem is NP-complete even for the class of trees with diameter at most 4. This results in a complete characterization of the complexity of the problem with respect to the diameter size. In fact, for diameter not larger than 3 the problem can be shown to be polynomially solvable using a dynamic programming approach. In addition we prove that the problem is NP-complete even for the class of trees of maximum degree at most 16. To the best of our knowledge, the only known result in this direction is that the tree search problem is solvable in O(|V| log|V|) time for trees with degree at most 2 (paths). We match the above complexity results with a tight algorithmic analysis. We first show that a natural greedy algorithm attains a 2-approximation. Furthermore, for the bounded degree instances, we show that any optimal strategy (i.e., one that minimizes the expected number of queries) performs at most O(\Delta(T) (log |V| + log w(T))) queries in the worst case, where w(T) is the sum of the likelihoods of the nodes of T and \Delta(T) is the maximum degree of T. We combine this result with a non-trivial exponential time algorithm to provide an FPTAS for trees with bounded degree

    Learning Graph-Convolutional Representations for Point Cloud Denoising

    Get PDF
    Point clouds are an increasingly relevant data type but they are often corrupted by noise. We propose a deep neural network based on graph-convolutional layers that can elegantly deal with the permutation-invariance problem encountered by learning-based point cloud processing methods. The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs from similarity among the high-dimensional feature representations of the points. When coupled with a loss promoting proximity to the ideal surface, the proposed approach significantly outperforms state-of-the-art methods on a variety of metrics. In particular, it is able to improve in terms of Chamfer measure and of quality of the surface normals that can be estimated from the denoised data. We also show that it is especially robust both at high noise levels and in presence of structured noise such as the one encountered in real LiDAR scans.Comment: European Conference on Computer Vision (ECCV) 202

    Local barycentric coordinates

    Get PDF
    Barycentric coordinates yield a powerful and yet simple paradigm to interpolate data values on polyhedral domains. They represent interior points of the domain as an affine combination of a set of control points, defining an interpolation scheme for any function defined on a set of control points. Numerous barycentric coordinate schemes have been proposed satisfying a large variety of properties. However, they typically define interpolation as a combination of all control points. Thus a local change in the value at a single control point will create a global change by propagation into the whole domain. In this context, we present a family of local barycentric coordinates (LBC), which select for each interior point a small set of control points and satisfy common requirements on barycentric coordinates, such as linearity, non-negativity, and smoothness. LBC are achieved through a convex optimization based on total variation, and provide a compact representation that reduces memory footprint and allows for fast deformations. Our experiments show that LBC provide more local and finer control on shape deformation than previous approaches, and lead to more intuitive deformation results

    Asymptotic Behavior of Ext functors for modules of finite complete intersection dimension

    Full text link
    Let RR be a local ring, and let MM and NN be finitely generated RR-modules such that MM has finite complete intersection dimension. In this paper we define and study, under certain conditions, a pairing using the modules \Ext_R^i(M,N) which generalizes Buchweitz's notion of the Herbrand diference. We exploit this pairing to examine the number of consecutive vanishing of \Ext_R^i(M,N) needed to ensure that \Ext_R^i(M,N)=0 for all i≫0i\gg 0. Our results recover and improve on most of the known bounds in the literature, especially when RR has dimension at most two
    • …
    corecore