Abstract

Let RR be a local ring, and let MM and NN be finitely generated RR-modules such that MM has finite complete intersection dimension. In this paper we define and study, under certain conditions, a pairing using the modules \Ext_R^i(M,N) which generalizes Buchweitz's notion of the Herbrand diference. We exploit this pairing to examine the number of consecutive vanishing of \Ext_R^i(M,N) needed to ensure that \Ext_R^i(M,N)=0 for all i0i\gg 0. Our results recover and improve on most of the known bounds in the literature, especially when RR has dimension at most two

    Similar works

    Full text

    thumbnail-image

    Available Versions