318 research outputs found

    Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    No full text
    International audiencePlasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV/m is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations

    Genetics of intellectual disability in consanguineous families

    No full text
    Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence

    Quantification of thermal ring flexibilities of aromatic and heteroaromatic compounds

    Get PDF
    The consequences of thermal fluctuations occurring at room temperatures on the aromatic character of a broad group of compounds were analyzed in three distinct ways. First of all, the ring deformations were modeled along normal coordinates coming from quantum thermo-chemistry computations. The amplitudes of vibrations were estimated according to absorbed energies at room temperature. Alternatively, in-plane and out-of-plane ring deformations were modeled via scanning procedure with partial relaxation of the molecular geometry. The influence of ring deformations on π–electron delocalization was expressed in terms of HOMA values. Besides, the ring deformability was defined as the averaged change of bond angles or dihedral angles constituting the ring that was associated with 1.5 kcal mol-1 increase of the system energy. The molecules structures adopted during vibrations at room temperature can lead to significant heterogeneity of structural index of aromaticity. The broad span of HOMA values was obtained for analyzed five- or six-membered aromatic and heteroaromatic rings. However, the averaged values obtained for such fluctuations almost perfectly match HOMA values of molecule in the ground state. It has been demonstrated that the ring deformability imposed by bond angle changes is much smaller than for dihedral angles with the same rise of system energy. Interestingly in the case of out-of-plane vibrations modeled by scanning procedure there is observed linear correlation between ring deformability and HOMA values. Proposed method for inclusion of thermal vibrations in the framework of π–electron delocalization provides natural shift of the way of thinking about aromaticity from a static quantity to a dynamic and heterogeneous one due to inclusion of a more realistic object of analysis – thermally deformed structures. From this perspective the thermal fluctuations are supposed to be non-negligible contributions to aromaticity phenomenon

    MLL leukemia-associated rearrangements in peripheral blood lymphocytes from healthy individuals

    Get PDF
    Chromosomal translocations are characteristic of hematopoietic neoplasias and can lead to unregulated oncogene expression or the fusion of genes to yield novel functions. In recent years, different lymphoma/leukemia-associated rearrangements have been detected in healthy individuals. In this study, we used inverse PCR to screen peripheral lymphocytes from 100 healthy individuals for the presence of MLL (Mixed Lineage Leukemia) translocations. Forty-nine percent of the probands showed MLL rearrangements. Sequence analysis showed that these rearrangements were specific for MLL translocations that corresponded to t(4;11)(q21;q23) (66%) and t(9;11) (20%). However, RT-PCR failed to detect any expression of t(4;11)(q21;q23) in our population. We suggest that 11q23 rearrangements in peripheral lymphocytes from normal individuals may result from exposure to endogenous or exogenous DNA-damaging agents. In practical terms, the high susceptibility of the MLL gene to chemically-induced damage suggests that monitoring the aberrations associated with this gene in peripheral lymphocytes may be a sensitive assay for assessing genomic instability in individuals exposed to genotoxic stress

    The role of the ubiquitination–proteasome pathway in breast cancer: Ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer

    Get PDF
    Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulation of growth factor receptors could play a role in the pathogenesis of cancer. Therapies directed at enhancing the degradation of growth factor receptors offer a promising approach to the treatment of malignancies

    Biological influence of Hakai in cancer: a 10-year review

    Get PDF
    In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues, and attach to a second site. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells that is characterized as a potent tumor suppressor and is modulated during various processes including epithelial–mesenchymal transition. Recent data have provided evidences for novel biological functional role of Hakai during tumor progression and other diseases. Here, we will review the knowledge that has been accumulated since Hakai discovery 10 years ago and its implication in human cancer disease. We will highlight the different signaling pathways leading to the influence on Hakai and suggest its potential usefulness as therapeutic target for cancer

    Apolipoprotein L1, income and early kidney damage

    Get PDF
    BACKGROUND: The degree to which genetic or environmental factors are associated with early kidney damage among African Americans (AAs) is unknown. METHODS: Among 462 AAs in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study, we examined the cross-sectional association between apolipoprotein L1 (APOL1) risk variants and income with: 1) mildly reduced eGFR (<75 mL/min/1.73 m(2), creatinine-cystatin C equation) and 2) elevated urine albumin-to-creatinine ratio (ACR) (≥17 in men and ≥25 mg/g in women). High risk APOL1 status was defined by 2 copies of high-risk variants; low risk if 0 or 1 copy. Income groups were dichotomized as < 14,000/year(lowestincomegroup)or14,000/year (lowest income group) or ≥ 14,000/year. Logistic regression models were adjusted for age, sex, and % European ancestry. RESULTS: Overall, participants’ mean age was 47 years and 16% (n = 73) had high risk APOL1 status. Mean eGFR was 99 mL/min/1.73 m(2). Mildly reduced eGFR was prevalent among 11% (n = 51). The lowest income group had higher adjusted odds (aOR) of mildly reduced eGFR than the higher income group (aOR 1.8, 95% CI 1.2-2.7). High-risk APOL1 was not significantly associated with reduced eGFR (aOR 1.5, 95% CI 0.9-2.5). Among 301 participants with ACR data, 7% (n = 21) had elevated ACR. Compared to low-risk, persons with high-risk APOL1 had higher odds of elevated ACR (aOR 3.8, 95% CI 2.0-7.3). Income was not significantly associated with elevated ACR (aOR 1.8, 95% CI 0.7-4.5). There were no significant interactions between APOL1 and income. CONCLUSIONS: Both genetic and socioeconomic factors may be important determinants of early kidney damage among AAs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12882-015-0008-6) contains supplementary material, which is available to authorized users
    corecore