16 research outputs found

    Interaction of Grassland Ecosystem with Livelihood and Wildlife Sustainability: Tanzanian Perspectives

    Get PDF
    In Tanzania, pure grasslands cover is estimated to be 60,381 km2, about 6.8% of the total land area, and is distributed in different parts. These grasslands are diverse in dominant grass species depending on rainfall, soil type, altitude, and management or grazing system. They support livestock and wildlife distributed in different eco-tomes and habitats of the country. The potential of grasslands for the livelihood of rural people is explicit from the fact that local people depend solely on natural production to satisfy their needs for animal products. Analysis of grazing lands indicated that livestock population, production of meat, and milk from grasslands increased. But the wildlife population, when considered in terms of livestock equivalent units (Large Herbivore Units) showed a declining trend. The contribution of grasslands to the total volume of meat produced in the country showed a declining state, while milk production showed a slight increase. This situation entails a need to evaluate the grasslands of Tanzania to ascertain their potential for supporting people’s livestock, wildlife, and livelihood. This study concluded that more research is needed to establish the possibility of grasslands to keep large numbers of grazing herbivores for sustainable livestock and wildlife production

    Barriers to chimpanzee gene flow at the south-east edge of their distribution

    Get PDF
    Populations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south-eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability. To address this uncertainty, we generated both mitochondrial and MiSeq-based microsatellite genotypes for 290 individuals ranging across western Tanzania. While shared mitochondrial haplotypes confirmed historical gene flow, our microsatellite analyses revealed two distinct clusters, suggesting two populations currently isolated from one another. However, we found evidence of high levels of gene flow maintained within each of these clusters, one of which covers an 18,000 km2 ecosystem. Landscape genetic analyses confirmed the presence of barriers to gene flow with rivers and bare habitats highly restricting chimpanzee movement. Our study demonstrates how advances in sequencing technologies, combined with the development of landscape genetics approaches, can resolve ambiguities in the genetic history of critical populations and better inform conservation efforts of endangered species

    Widespread Treponema pallidum Infection in Nonhuman Primates, Tanzania

    Get PDF
    We investigated Treponema pallidum infection in 8 nonhuman primate species (289 animals) in Tanzania during 2015–2017. We used a serologic treponemal test to detect antibodies against the bacterium. Infection was further confirmed from tissue samples of skin-ulcerated animals by 3 independent PCRs (polA, tp47, and TP_0619). Our findings indicate that T. pallidum infection is geographically widespread in Tanzania and occurs in several species (olive baboons, yellow baboons, vervet monkeys, and blue monkeys). We found the bacterium at 11 of 14 investigated geographic locations. Anogenital ulceration was the most common clinical manifestation; orofacial lesions also were observed. Molecular data show that nonhuman primates in Tanzania are most likely infected with T. pallidum subsp. pertenue–like strains, which could have implications for human yaws eradication

    Barriers to chimpanzee gene flow at the south‐east edge of their distribution

    Get PDF
    Populations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south‐eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability. To address this uncertainty, we generated both mitochondrial and MiSeq‐based microsatellite genotypes for 290 individuals ranging across western Tanzania. While shared mitochondrial haplotypes confirmed historical gene flow, our microsatellite analyses revealed two distinct clusters, suggesting two populations currently isolated from one another. However, we found evidence of high levels of gene flow maintained within each of these clusters, one of which covers an 18,000 km2 ecosystem. Landscape genetic analyses confirmed the presence of barriers to gene flow with rivers and bare habitats highly restricting chimpanzee movement. Our study demonstrates how advances in sequencing technologies, combined with the development of landscape genetics approaches, can resolve ambiguities in the genetic history of critical populations and better inform conservation efforts of endangered species

    Epidemiology and molecular characterization of Cryptosporidium spp. in humans, wild primates, and domesticated animals in the Greater Gombe Ecosystem, Tanzania.

    No full text
    Cryptosporidium is an important zoonotic parasite globally. Few studies have examined the ecology and epidemiology of this pathogen in rural tropical systems characterized by high rates of overlap among humans, domesticated animals, and wildlife. We investigated risk factors for Cryptosporidium infection and assessed cross-species transmission potential among people, non-human primates, and domestic animals in the Gombe Ecosystem, Kigoma District, Tanzania. A cross-sectional survey was designed to determine the occurrence and risk factors for Cryptosporidium infection in humans, domestic animals and wildlife living in and around Gombe National Park. Diagnostic PCR revealed Cryptosporidium infection rates of 4.3% in humans, 16.0% in non-human primates, and 9.6% in livestock. Local streams sampled were negative. DNA sequencing uncovered a complex epidemiology for Cryptosporidium in this system, with humans, baboons and a subset of chimpanzees infected with C. hominis subtype IfA12G2; another subset of chimpanzees infected with C. suis; and all positive goats and sheep infected with C. xiaoi. For humans, residence location was associated with increased risk of infection in Mwamgongo village compared to one camp (Kasekela), and there was an increased odds for infection when living in a household with another positive person. Fecal consistency and other gastrointestinal signs did not predict Cryptosporidium infection. Despite a high degree of habitat overlap between village people and livestock, our results suggest that there are distinct Cryptosporidium transmission dynamics for humans and livestock in this system. The dominance of C. hominis subtype IfA12G2 among humans and non-human primates suggest cross-species transmission. Interestingly, a subset of chimpanzees was infected with C. suis. We hypothesize that there is cross-species transmission from bush pigs (Potaochoerus larvatus) to chimpanzees in Gombe forest, since domesticated pigs are regionally absent. Our findings demonstrate a complex nature of Cryptosporidium in sympatric primates, including humans, and stress the need for further studies

    Global positioning system data-loggers: a tool to quantify fine-scale movement of domestic animals to evaluate potential for zoonotic transmission to an endangered wildlife population.

    No full text
    Domesticated animals are an important source of pathogens to endangered wildlife populations, especially when anthropogenic activities increase their overlap with humans and wildlife. Recent work in Tanzania reports the introduction of Cryptosporidium into wild chimpanzee populations and the increased risk of ape mortality associated with SIVcpz-Cryptosporidium co-infection. Here we describe the application of novel GPS technology to track the mobility of domesticated animals (27 goats, 2 sheep and 8 dogs) with the goal of identifying potential routes for Cryptosporidium introduction into Gombe National Park. Only goats (5/27) and sheep (2/2) were positive for Cryptosporidium. Analysis of GPS tracks indicated that a crop field frequented by both chimpanzees and domesticated animals was a potential hotspot for Cryptosporidium transmission. This study demonstrates the applicability of GPS data-loggers in studies of fine-scale mobility of animals and suggests that domesticated animal-wildlife overlap should be considered beyond protected boundaries for long-term conservation strategies

    Risk factors for <i>Cryptosporidium</i> infection in chimpanzees in Gombe National Park, Tanzania.

    No full text
    <p><sup>a</sup>Sample sizes may vary based on number of individual observations.</p><p>Binary logistic regression was used to calculate odds ratios, confidence interval and significance in most cases. Fisher’s Exact test was used to calculate <i>p</i>-values when cells contained values less than 5.</p><p>Risk factors for <i>Cryptosporidium</i> infection in chimpanzees in Gombe National Park, Tanzania.</p

    Infection rate of <i>Cryptosporidium</i> species and <i>C</i>. <i>hominis</i> subtypes detected by species and location in and around Gombe National Park, Tanzania.

    No full text
    <p><sup>a</sup>One individual was positive for both <i>C</i>. <i>suis</i> and <i>C</i>. <i>hominis</i></p><p>Infection rate of <i>Cryptosporidium</i> species and <i>C</i>. <i>hominis</i> subtypes detected by species and location in and around Gombe National Park, Tanzania.</p
    corecore