16 research outputs found

    Élaboration d’un revêtement dense et protecteur sur polycarbonate

    No full text
    This work deals with the synthesis and the characterization of hybrid O/I silica coatings prepared by the sol-gel route and deposited on polycarbonate (PC), for applications in hot and humid environment in the alimentary field. PC is well-known for undergoing hydrolysis in such conditions (causing its progressive depolymerization and thus leading to the release of bisphenol A, a molecule suspected to be toxic): the function of the coating would thus consist in preventing PC from this kind of premature ageing, along with the enhancement of its mechanical properties. As a first step, a lot of different sols were synthesized and optimized, mainly in terms of type and quantity of precursors, along with the pH, in order to obtain transparent and homogeneous coatings. The hydrolysis and condensation reactions were monitored in order to determine the minimum ageing time to be waited before any film deposition. After deposition by dip-coating, the mechanical properties of the films were assessed by using many different techniques. Basically, the coated-PC samples display higher properties than the uncoated one. The influence of numerous synthesis parameters such as the organoalkoxysilanes/colloidal silica ratio, the presence of additives, the kind of surface treatment of PC before film deposition, or the annealing conditions was also studied. This whole work led to the synthesis, from two different sol-gel systems, of superior quality coatings in terms of transparency, adherence to the substrate, non-toxicity, along with elevated hardness, density and Young’s modulus valuesCe travail s’intéresse a la synthèse et à la caractérisation de revêtements hybrides O/I à base de silice, préparés par voie sol-gel et déposés sur polycarbonate (PC), pour des applications en milieu chaud et humide dans le domaine culinaire. Le PC étant connu pour sa sensibilité à l’hydrolyse dans ce type de milieux (provoquant sa dépolymérisation progressive et ainsi la libération de bisphénol A, molécule suspectée comme étant toxique), le rôle du revêtement est donc de protéger le PC et d’éviter son vieillissement prématuré, tout en améliorant ses propriétés mécaniques. Dans un premier temps, de nombreux sols ont été synthétisés et optimisés, principalement en termes de nature et quantités de précurseurs, et de pH, dans le but d’obtenir des revêtements homogènes et transparents. Un suivi des réactions d’hydrolyse et de condensation des sols a également été réalisé afin de déterminer le temps minimal de maturation de ces derniers. Apres dépôt des revêtements par dip-coating, les propriétés mécaniques des films ont été étudiées par de nombreuses techniques. D’un point de vue général, les propriétés des échantillons revêtus ont été trouvées supérieures à celles du PC nu. L’influence de nombreux paramètres de synthèse comme le ratio organoalcoxysilane(s)/silice colloïdale, l’ajout d’additifs, le type de traitement de surface du PC pré-dépôt ou encore les conditions de recuit, a également été étudiée. L’ensemble de ce travail a permis d’obtenir, à partir de deux systèmes sol-gel différents, des revêtements performants en termes de transparence, d’adhésion au substrat, de non-toxicité, couplés à des valeurs élevées de dureté, de densité et de module de Youn

    Synthesis of a dense and protective coating on polycarbonate

    No full text
    Ce travail s’intéresse a la synthèse et à la caractérisation de revêtements hybrides O/I à base de silice, préparés par voie sol-gel et déposés sur polycarbonate (PC), pour des applications en milieu chaud et humide dans le domaine culinaire. Le PC étant connu pour sa sensibilité à l’hydrolyse dans ce type de milieux (provoquant sa dépolymérisation progressive et ainsi la libération de bisphénol A, molécule suspectée comme étant toxique), le rôle du revêtement est donc de protéger le PC et d’éviter son vieillissement prématuré, tout en améliorant ses propriétés mécaniques. Dans un premier temps, de nombreux sols ont été synthétisés et optimisés, principalement en termes de nature et quantités de précurseurs, et de pH, dans le but d’obtenir des revêtements homogènes et transparents. Un suivi des réactions d’hydrolyse et de condensation des sols a également été réalisé afin de déterminer le temps minimal de maturation de ces derniers. Apres dépôt des revêtements par dip-coating, les propriétés mécaniques des films ont été étudiées par de nombreuses techniques. D’un point de vue général, les propriétés des échantillons revêtus ont été trouvées supérieures à celles du PC nu. L’influence de nombreux paramètres de synthèse comme le ratio organoalcoxysilane(s)/silice colloïdale, l’ajout d’additifs, le type de traitement de surface du PC pré-dépôt ou encore les conditions de recuit, a également été étudiée. L’ensemble de ce travail a permis d’obtenir, à partir de deux systèmes sol-gel différents, des revêtements performants en termes de transparence, d’adhésion au substrat, de non-toxicité, couplés à des valeurs élevées de dureté, de densité et de module de YoungThis work deals with the synthesis and the characterization of hybrid O/I silica coatings prepared by the sol-gel route and deposited on polycarbonate (PC), for applications in hot and humid environment in the alimentary field. PC is well-known for undergoing hydrolysis in such conditions (causing its progressive depolymerization and thus leading to the release of bisphenol A, a molecule suspected to be toxic): the function of the coating would thus consist in preventing PC from this kind of premature ageing, along with the enhancement of its mechanical properties. As a first step, a lot of different sols were synthesized and optimized, mainly in terms of type and quantity of precursors, along with the pH, in order to obtain transparent and homogeneous coatings. The hydrolysis and condensation reactions were monitored in order to determine the minimum ageing time to be waited before any film deposition. After deposition by dip-coating, the mechanical properties of the films were assessed by using many different techniques. Basically, the coated-PC samples display higher properties than the uncoated one. The influence of numerous synthesis parameters such as the organoalkoxysilanes/colloidal silica ratio, the presence of additives, the kind of surface treatment of PC before film deposition, or the annealing conditions was also studied. This whole work led to the synthesis, from two different sol-gel systems, of superior quality coatings in terms of transparency, adherence to the substrate, non-toxicity, along with elevated hardness, density and Young’s modulus value

    Hybrid silica coatings on polycarbonate: enhanced properties

    No full text
    International audienceHybrid silica coatings based on 3- glycidoxypropyltriethoxysilane (GPTES), tetraethylorthosilicate (TEOS) and colloidal silica were deposited on polycarbonate (PC) by the sol-gel method, in order to obtain a material with enhanced properties with respect to raw PC (mainly scratch resistance, hydrophobicity and density), and consequently reach increased durability. The necessity of performing a N-2-plasma treatment on PC (before coating deposition) was highlighted in order to obtain a good adherence between the coating and the substrate: XPS measurements showed that after treatment, nitrogenous radicals had formed on the PC surface and were able to link covalently with the sol during its deposition. Adherence was also higher when young sols (< 8-day-old) were used. Different alkoxysilanes/colloidal silica ratios were tested to optimize the coating resistance: crack resistance of the coatings was found to be greater when the ratio was high. Scratch resistance of raw PC was enhanced as soon as PC was coated, irrespective of the alkoxysilanes/colloidal silica ratio or the sol ageing time. The density of the coatings was assessed by environmental ellipsometric porosimetry and found to be very high. Water contact angle measurements showed that the hydrophobicity of the coatings was inferior to raw PC. The addition in the sol of a small wt% of octyltriethoxysilane (OTES), 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FTES) and silicone surface additive (BYK-306) allowed a significant increase in hydrophobicity of the samples

    In vitro genotoxicity assessment of MTES, GPTES and TEOS, three precursors intended for use in food contact coatings

    No full text
    International audienceOrganoalkoxysilanes are precursors that are used increasingly in the synthesis of food contact coatings. To comply with the EU regulation, their potential toxicity must be assessed, and very little information is known. The genotoxicity of three common precursors was studied, namely, tetraethylorthosilicate (TEOS), methyltriethoxysilane (MTES) and 3-glycidyloxypropyltriethoxysilane (GPTES). By the Ames test, MTES and TEOS were not mutagenic for bacteria. A significant positive response was observed with GPTES in the TA100 and TA1535 strains. The mutagenic effect was more pronounced in the presence of the exogenous metabolic activation system with an increase of the induction factor (ten-fold higher for the TA1535 strain). In the micronucleus assay performed with a human hepatoma cell line (HepG2 cells), GPTES gave negative results even in the presence of an exogenous activation system. To ascertain the possibility of using this precursor in food contact material, its migration must be monitored according to the coating formulation because migration might result in hazardous human exposure

    Independent Control of Adhesive and Bulk Properties of Hybrid Silica Coatings on Polycarbonate

    No full text
    International audienceTransparent polymers are widely used in many 9 applications ranging from automotive windows to micro-10 electronics packaging. However, their intrinsic characteristics, 11 in particular their mechanical properties, are significantly 12 degraded with exposure to different weather conditions. For 13 instance, under humid environment or UV-irradiation, 14 polycarbonate (PC) undergoes depolymerization, leading to 15 the release of Bisphenol A, a molecule presumed to be a 16 hormonal disruptor, potentially causing health problems. This 17 is a serious concern and the new REACH (Registration, 18 Evaluation, Authorization and Restriction of Chemical 19 substances) program dictates that materials releasing Bisphenol A should be removed from the market by January 1st, 2015 20 (2012-1442 law). Manufacturers have tried to satisfy this new regulation by depositing atop the PC a dense oxide-like protective 21 coating that would act as a barrier layer. While high hardness, modulus, and density can be achieved by this approach, these 22 coatings suffer from poor adhesion to the PC as evidenced by the numerous delamination events occurring under low scratch 23 constraints. Here, we show that the combination of a N 2 /H 2-plasma treatment of PC before depositing a hybrid organic-24 inorganic solution leads to a coating displaying elevated hardness, modulus, and density, along with a very high adherence to PC 25 (> 20 J/m 2 as measured by double cantilever beam test). In this study, the sol-gel coatings were composed of hybrid O/I silica 26 (based on organoalkoxysilanes and colloidal silica) and designed to favor covalent bonding between the hybrid network and the 27 surface treated PC, hence increasing the contribution of the plastic deformation from the substrate. Interestingly, double-28 cantilever beam (DCB) tests showed that the coating's adhesion to PC was the same irrespective of the organoalkoxysilanes/ 29 colloidal silica ratio. The versatility of the sol-gel deposition techniques (dip-coating, spray-coating, etc.), together with the 30 excellent mechanical properties and exceptional adherence of this hybrid material to PC should lead to interesting new 31 applications in diverse fields: optical eyeglasses , medical materials, packaging, and so forth. 3

    Analysis of tin oxide thin films fabricated via sol-gel and delayed ignition of combustion processes

    No full text
    Metal oxide semiconductor (MOS) gas sensors based on thin film technology offer the potential of higher sensitivity and faster response and recovery than their thick film counterparts. Solution-based approaches are facile and inexpensive routes to prepare thin films. They also provide the means to control and tune the final MOS morphology. Here we present an analysis of tin oxide-based MOS films tens of nanometers thick prepared using two methodologies: a sol-gel process which makes use of tin (II) precursors and, alternatively, via Delayed Ignition of Combustion (DICO). The latter process offers a route to the thin film oxides at lower cure temperatures using ionic oxidizers and organic ignition fuels. We analyze and compare the morphological and compositional properties of the films by means of SEM, TEM, RBS and XRR. For films of comparable thickness, we evaluate the response to acetone down to the sub-ppm level and establish structure-property relationships

    In vitro toxicity assessment of extracts derived from sol–gel coatings on polycarbonate intended to be used in food contact applications

    No full text
    IF 3.584International audiencePolycarbonate is a widely used polymer in food contact applications all around the world. However, due to the potential release of Bisphenol A (BPA) during repeated washing cycles, its use becomes compromised as BPA is known for being an endocrine disruptor for rodents. In order to tackle this issue, sol-gel coatings based on organoalkoxysiloxane were developed on PC, to act as a physical barrier. To this end, two sol-gel systems based on tetraethylorthosilicate (TEOS), methyltriethoxysilane (MTES) and 3-glycidyloxypropyltriethoxysilane (GPTES), three common sol-gel precursors, were prepared. The coatings derived from the latter two systems were then studied with regards to their potential toxicity in vitro. Migration tests were performed in food simulants, and the maximal migration was obtained in ethanol 10% (v/v) for one system and in isooctane for the other one. In vitro genotoxicity was assessed with the Ames test (OECD 471) and the micronucleus assay (OECD 487), and no genotoxic effect was observed. Moreover, the estrogenic activity of the extracts was studied with a transcriptional activation assay using transient transfection in human cells; none of the extracts was found estrogenic. These negative in vitro results are highly promising for the future use of these new barrier coating formulations onto food contact materials. (C) 2016 Elsevier Ltd. All rights reserved

    Scratch-resistant sol-gel coatings on pristine polycarbonate

    No full text
    International audienceThe deposition of protective transparent coatings on polycarbonate (PC) with higher scratch resistance than that of the polymeric substrate is performed using an original sol-gel system. Our strategy relies on the preparation of hybrid organic-inorganic (HOI) films using sol-gel based on 3-glycidoxypropyltri-methoxysilane (GPTMS), tetraethoxysilane (TEOS) and zirconium(IV) propoxide (ZTP). We demonstrate that despite a low coating-to-PC adhesion (<2 J m(-2)), it is possible to maintain the coating integrity under high applied scratch forces when the organic domains of the film are highly connected. In this case, the increase in organic network connectivity was achieved through the reaction of epoxide rings in the presence of ZTP, as evidenced by FTIR. The subsequent additional plasticity of the coating led to an increase in scratch-test delamination force by more than twofold: from 1.7 N for the hybrid film without ZTP to 3.8 N with the highest degree of ZTP content. In regard to the inorganic network, an increasing number of Si-O-Zr and Zr-O-Zr bonds with increasing ZTP content were evidenced by FTIR and O-17 MAS NMR, allowing improved hydrolysis resistance, and therefore more durable coatings. Altogether, these results demonstrate the key role played by ZTP in tuning the mechanical properties and durability of HOI coating without requiring adhesion-promoting treatments

    Using Unentangled Oligomers To Toughen Materials

    No full text
    Entanglements between polymer chains are responsible for the strength and toughness of polymeric materials. When the chains are too short to form entanglements, the polymer becomes weak and brittle. Here we show that molecular bridging of oligomers in molecular-scale confinement can dramatically toughen materials even when intermolecular entanglements are completely absent. We describe the fabrication of nanocomposite materials that confine oligomer chains to molecular-scale dimensions and demonstrate that partially confined unentangled oligomers can toughen materials far beyond rule-of-mixtures estimates. We also characterize how partially confined oligomers affect the kinetics of nanocomposite cracking in moist environments and show that the presence of a backfilled oligomeric phase within a nanoporous organosilicate matrix leads to atomistic crack path meandering in which the failure path is preferentially located within the matrix phase

    Synthesis of Polyimides in Molecular-Scale Confinement for Low-Density Hybrid Nanocomposites

    No full text
    In this work, we exploit a confinement-induced molecular synthesis and a resulting bridging mechanism to create confined polyimide thermoset nanocomposites that couple molecular confinement-enhanced toughening with an unprecedented combination of high-temperature properties at low density. We describe a synthesis strategy that involves the infiltration of individual polymer chains through a nanoscale porous network while simultaneous imidization reactions increase the molecular backbone stiffness. In the extreme limit where the confinement length scale is much smaller than the polymer’s molecular size, confinement-induced molecular mechanisms give rise to exceptional mechanical properties. We find that polyimide oligomers can undergo cross-linking reactions even in such molecular-scale confinement, increasing the molecular weight of the organic phase and toughening the nanocomposite through a confinement-induced energy dissipation mechanism. This work demonstrates that the confinement-induced molecular bridging mechanism can be extended to thermoset polymers with multifunctional properties, such as excellent thermo-oxidative stability and high service temperatures (>350 °C)
    corecore