74 research outputs found

    Contemplative mental training reduces hair glucocorticoid levels in a randomized clinical trial

    Get PDF
    Objective To investigate the effect of regular contemplative mental training on endocrine and psychological indices of long-term stress. Methods An open-label efficacy trial that comprised three distinct 3-month modules targeting attention and interoception, socio-affective or socio-cognitive abilities through dyadic exercises and secularised meditation practices was conducted with healthy adults. Participants underwent the training for three months, nine months, or were assigned to a retest control cohort. Chronic stress indices were assayed at four timepoints: pre-training and after three, six and nine months. The main outcome measures were cortisol (HC) and cortisone (HE) concentrations in hair and self-reported long-term stress. Results Of 362 initially randomized individuals, 30 dropped out before study initiation (N = 332; mean age-40. 7 ± SD = 9.2 years; 197 women). Hair-based glucocorticoid assays were available from n = 227, and questionnaire data from n = 326. Results from three separate training cohorts (TCs) revealed consistent decreases in HC and HE levels over the first three (TC3) to six months (TC1 and TC2) of training, with no further reduction at the final 9-month mark (baseline to end-of-training, HC: TC1, t(355) = 2.59, p = .010; est.:0.35[0.14]; TC2, t(363) = 4.06, p < .001; est.:0.48[0.12]; TC3: t(368) = 3.18, p = .002; est.:0.41[0.13]; HE: TC1, t(435) = 3.23, p = .001; est.:0.45[0.14]; TC2: t(442) = 2.60, p = .010; est.:0.33[0.13]; TC3: t(446) = 4.18, p < .001; est.:0.57[0.14]). Training effects on HC increased with practice frequency, and effects on both HC and HE were independent of training content and unrelated to change in self-reported chronic stress. Self-reported stress, and cortisol to dehydroepiandrosterone ratios as an exploratory endpoint, were also reduced, albeit less consistently. Conclusions Our results point to the reduction of long-term cortisol exposure as a mechanism through which contemplative mental training may exert positive effects on practitioners' health. Trial registration: ClinicalTrials.gov identifier: NCT0183310

    A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk.

    Get PDF
    Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk

    Giant molecular filaments in the Milky Way

    Get PDF
    Throughout the Milky Way, molecular clouds typically appear filamentary, and mounting evidence indicates that this morphology plays an important role in star formation. What is not known is to what extent the dense filaments most closely associated with star formation are connected to the surrounding diffuse clouds up to arbitrarily large scales. How are these cradles of star formation linked to the Milky Way’s spiral structure? Using archival Galactic plane survey data, we have used multiple datasets in search of large-scale, velocity-coherent filaments in the Galactic plane. In this paper, we present our methods employed to identify coherent filamentary structures first in extinction and confirmed using Galactic Ring Survey data. We present a sample of seven giant molecular filaments (GMFs) that have lengths on the order of ~100 pc, total masses of 104–105 M⊙, and exhibit velocity coherence over their full length. The GMFs we study appear to be inter-arm clouds and may be the Milky Way analogs to spurs observed in nearby spiral galaxies. We find that between 2 and 12% of the total mass (above ~1020 cm-2) is “dense” (above 1022 cm-2), where filaments near spiral arms in the Galactic midplane tend to have higher dense gas mass fractions than those further from the arms

    PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar

    Full text link
    (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 μ\mum. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR, the atomic PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extract five template spectra to represent the morphology and environment of the Orion Bar PDR. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. While the spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μ\mum, a wealth of weaker features and sub-components are present. We report trends in the widths and relative strengths of AIBs across the five template spectra. These trends yield valuable insight into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 μ\mum AIB emission from class B11.2_{11.2} in the molecular PDR to class A11.2_{11.2} in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a "weeding out" of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    PDRs4All II: JWST's NIR and MIR imaging view of the Orion Nebula

    Full text link
    The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of 0.1-1" (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. A complex, structured, and folded DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate

    Revisiting the stress recovery hypothesis: Differential associations of cortisol stress reactivity and recovery after acute psychosocial stress with markers of long-term stress and health

    No full text
    Exposure to excessive and long-term stress may result in dysregulation of the stress system, including the acute stress response. In particular, failure to downregulate stress-related reactivity may lead to prolonged stress responses and the accumulation of allostatic load. However, the contribution of altered acute cortisol recovery to chronic stress and associated health impairments has often been neglected. Addressing this lack of research, we explored whether recovery from - more so than reactivity to - acute stress captures the basal stress load of an individual. Using Piecewise Growth Curve Models with Landmark Registration, we analyzed cortisol reactivity and recovery slopes of 130 healthy participants exposed to a standardized psychosocial laboratory stressor. Reactivity and recovery were predicted by measures indicative of long-term stress and its downstream effects, including self-report questionnaires, diurnal cortisol indices [cortisol awakening response (CAR); diurnal cortisol slope], markers of pro-inflammatory activity (interleukin-6; high-sensitive C-reactive protein), and hippocampal volume (HCV). Among these measures, only an increased CAR was specifically and consistently associated with relatively impaired recovery. Since the CAR represents the physiological enhancement needed to meet the anticipated demands of the forthcoming day, this finding may highlight the contribution of cognitive processes in determining both CAR and acute stress recovery. Furthermore, greater cortisol reactivity covaried with smaller HCV, showing that increased acute reactivity translates to health-relevant downstream effects. The lack of further associations between long-term and acute stress measures may arise from biases in self-reported chronic stress and the rigorously health-screened study sample. Overall, our findings suggest that while cortisol stress recovery might not supersede reactivity as an indicator of the long-term stress load or associated health effects, recovery and reactivity have differential utility in describing individuals' allostatic states

    Open and reproducible science practices in psychoneuroendocrinology: opportunities to foster scientific progress

    No full text
    This perspective article was written by invitation of the editors in chief as a summary and extension of the symposium entitled Psychoneuroendocrine Research in the Era of the Replication Crisis which was held at the virtual meeting of the International Society of Psychoneuroendocrinology 2021. It highlights the opportunities presented by the application of open and reproducible scientific practices in psychoneuroendocrinology (PNE), an interdisciplinary field at the intersection of psychology, endocrinology, immunology, neurology, and psychiatry. It conveys an introduction to the topics preregistration, registered reports, quantifying the impact of equally-well justifiable analysis decisions, and open data and scripts, while emphasizing ‘selfish’ reasons to adopt such practices as individual researcher. Complementary to the call for adoption of open science practices, we highlight the need for methodological best practice guidelines in the field of PNE, which could further contribute to enhancing replicability of results. We propose concrete steps for future actions and provide links to additional resources for those interested in adopting open and reproducible science practices in future studies
    corecore