1,939 research outputs found

    Gas-dynamic shock heating of post-flare loops due to retraction following localized, impulsive reconnection

    Full text link
    We present a novel model in which shortening of a magnetic flux tube following localized, three-dimensional reconnection generates strong gas-dynamic shocks around its apex. The shortening releases magnetic energy by progressing away from the reconnection site at the Alfven speed. This launches inward flows along the field lines whose collision creates a pair of gas-dynamic shocks. The shocks raise both the mass density and temperature inside the newly shortened flux tube. Reconnecting field lines whose initial directions differ by more that 100 degrees can produce a concentrated knot of plasma hotter that 20 MK, consistent with observations. In spite of these high temperatures, the shocks convert less than 10% of the liberated magnetic energy into heat - the rest remains as kinetic energy of bulk motion. These gas-dynamic shocks arise only when the reconnection is impulsive and localized in all three dimensions; they are distinct from the slow magnetosonic shocks of the Petschek steady-state reconnection model

    A Model for Patchy Reconnection in Three Dimensions

    Full text link
    We show, theoretically and via MHD simulations, how a short burst of reconnection localized in three dimensions on a one-dimensional current sheet creates a pair of reconnected flux tubes. We focus on the post-reconnection evolution of these flux tubes, studying their velocities and shapes. We find that slow-mode shocks propagate along these reconnected flux tubes, releasing magnetic energy as in steady-state Petschek reconnection. The geometry of these three-dimensional shocks, however, differs dramatically from the classical two-dimensional geometry. They propagate along the flux tube legs in four isolated fronts, whereas in the two-dimensional Petschek model, they form a continuous, stationary pair of V-shaped fronts. We find that the cross sections of these reconnected flux tubes appear as teardrop shaped bundles of flux propagating away from the reconnection site. Based on this, we argue that the descending coronal voids seen by Yohkoh SXT, LASCO, and TRACE are reconnected flux tubes descending from a flare site in the high corona, for example after a coronal mass ejection. In this model, these flux tubes would then settle into equilibrium in the low corona, forming an arcade of post-flare coronal loops.Comment: 27 pages plus 16 figure

    Smarter irrigation scheduling in the sugarcane farming system using the Internet of Things

    Get PDF
    Better irrigation practices can lead to improved yields through less water stress and reduced water usage to deliver economic benefits for farmers. More and more sugarcane growers are transitioning to automated irrigation in the Burdekin and other regions. Automated irrigation systems can save farmers a significant amount of time by remotely turning on and off pumps and valves. However, the system could be improved if it could be integrated with tools that factor in the weather, crop growing conditions, water deficit, and crop stress, to improve irrigation use efficiency. IrrigWeb is a decision-support tool that is turned to as a solution to this problem. IrrigWeb uses CANEGRO to help farmers decide when to irrigate and how much to apply. Farmers can then use this information to plan their irrigation management. However, managing irrigation is a considerable time investment for Burdekin farmers. A tool is needed to integrate the auto-irrigation system (e.g., WiSA) and IrrigWeb to provide a smarter irrigation solution. An uplink program (WiSA to IrrigWeb) has been successfully developed and implemented as part of a pilot study. It saves farmers a significant amount of time by uploading irrigation and rainfall data automatically instead of the farmer having to input them manually. This paper focuses on developing a smarter irrigation-scheduling tool that connects IrrigWeb to WiSA. A downlink program was developed to download, calculate and apply irrigation schedules automatically. In this process, sugarcane irrigators will spend less time manually setting up irrigation schedules as it will happen automatically. The simulation results demonstrated that the downlink program could improve the scheduling by incorporating practical limitations, such as pumping capacity or pumping time constraints, that are found on the farm

    Proton Therapy for Head and Neck Adenoid Cystic Carcinoma: Initial Clinical Outcomes

    Get PDF
    Background The purpose of this study was to report outcomes of proton therapy in head and neck adenoid cystic carcinoma. Methods We conducted a retrospective analysis of 26 patients treated between 2004 and 2012. Twenty patients (77%) had base of skull involvement; 19 (73%) were treated for initial disease and 7 (27%) for recurrent disease. Twenty patients were treated postoperatively, 6 after biopsy alone and 24 had positive margins or gross residual disease. Median dose delivered was 72 Gy (relative biological effectiveness [RBE]). Results Median follow-up was 25 months (range, 7–50 months). The 2-year overall survival was 93% for initial disease course and 57% for recurrent disease (p = .19). The 2-year local control was 95% for initial disease and 86% for recurrent disease (p = .48). The 2-year distant metastatic rate was 25%. Late toxicity of grade 0 or 1 was seen in 17 patients, grade 2 in 5, grade 3 in 2, grade 4 in 1, and grade 5 in 1. Conclusion Initial outcomes of proton therapy are encouraging. Longer follow-up is required

    High-Performance Computer Algebra: A Hecke Algebra Case Study

    Get PDF
    We describe the first ever parallelisation of an algebraic computation at modern HPC scale. Our case study poses challenges typical of the domain: it is a multi-phase application with dynamic task creation and irregular parallelism over complex control and data structures. Our starting point is a sequential algorithm for finding invariant bilinear forms in the representation theory of Hecke algebras, implemented in the GAP computational group theory system. After optimising the sequential code we develop a parallel algorithm that exploits the new skeleton-based SGP2 framework to parallelise the three most computationally-intensive phases. To this end we develop a new domain-specific skeleton, parBufferTryReduce. We report good parallel performance both on a commodity cluster and on a national HPC, delivering speedups up to 548 over the optimised sequential implementation on 1024 cores

    Shocks and Thermal Conduction Fronts in Retracting Reconnected Flux Tubes

    Full text link
    We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfv\'enic speeds from the reconnection site. Heating occurs in gas-dynamic shocks which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong gas-dynamic shocks generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the tube, rendering the diffusive processes dominant. They determine the thickness of the shock that evolves up to a steady-state value, although this condition may not be reached in the short times involved in a flare. For realistic solar coronal parameters, this steady-state shock thickness might be as long as the entire flux tube. For strong shocks at low Prandtl numbers, typical of the solar corona, the gas-dynamic shock consists of an isothermal sub-shock where all the compression and cooling occur, preceded by a thermal front where the temperature increases and most of the heating occurs. We estimate the length of each of these sub-regions and the speed of their propagation.Comment: 39 pages (AASTeX: 29 pages of text, 10 figures), accepted for publication in the Astrophysical Journa

    Easy on that trigger dad: a study of long term family photo retrieval

    Get PDF
    We examine the effects of new technologies for digital photography on people's longer term storage and access to collections of personal photos. We report an empirical study of parents' ability to retrieve photos related to salient family events from more than a year ago. Performance was relatively poor with people failing to find almost 40% of pictures. We analyze participants' organizational and access strategies to identify reasons for this poor performance. Possible reasons for retrieval failure include: storing too many pictures, rudimentary organization, use of multiple storage systems, failure to maintain collections and participants' false beliefs about their ability to access photos. We conclude by exploring the technical and theoretical implications of these findings
    • …
    corecore