
High-Performance Computer Algebra: A Hecke Algebra 
Case Study

MAIER, Patrick <http://orcid.org/0000-0002-7051-8169>, LIVESEY, Daria, 
LOIDL, Hans-Wolfgang and TRINDER, Phil

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/18618/

This document is the author deposited version.  You are advised to consult the 
publisher's version if you wish to cite from it.

Published version

MAIER, Patrick, LIVESEY, Daria, LOIDL, Hans-Wolfgang and TRINDER, Phil (2014). 
High-Performance Computer Algebra: A Hecke Algebra Case Study. In: Euro-Par 
2014 Parallel Processing. Springer, 415-426. 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/151241322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


High-Performance Computer Algebra:

A Hecke Algebra Case Study

Patrick Maier1, Daria Livesey2, Hans-Wolfgang Loidl3, and Phil Trinder1

1 School of Computing Science, University of Glasgow, Glasgow, UK
2 School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK

3 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK

Abstract. We describe the first ever parallelisation of an algebraic computation

at modern HPC scale. Our case study poses challenges typical of the domain: it

is a multi-phase application with dynamic task creation and irregular parallelism

over complex control and data structures.

Our starting point is a sequential algorithm for finding invariant bilinear forms

in the representation theory of Hecke algebras, implemented in the GAP compu-

tational group theory system. After optimising the sequential code we develop a

parallel algorithm that exploits the new skeleton-based SGP2 framework to par-

allelise the three most computationally-intensive phases. To this end we develop

a new domain-specific skeleton, parBufferTryReduce. We report good par-

allel performance both on a commodity cluster and on a national HPC, delivering

speedups up to 548 over the optimised sequential implementation on 1024 cores.

1 Introduction

Computational algebra is an important area of symbolic computation with many com-

plex and expensive computations that would benefit from parallel execution. The area is

served by a variety of systems, many specialising in some mathematical domain, for ex-

ample GAP [7], a computational algebra system (CAS) specifically designed for group

theory and combinatorics.

Some discrete mathematical problems are embarrassingly parallel, and this has been

exploited for years even at Internet scale, e. g. the “Great Internet Mersenne Prime

Search”. Other problems have more complex coordination patterns and both parallel

algorithms and parallel CAS implementations have been developed, e. g. ParGAP [5].

Many parallel algebraic computations exhibit high degrees of irregularity, at multiple

levels, with numbers and sizes of tasks varying enormously (up to 5 orders of magni-

tude) [16]. They tend to use complex user-defined data structures, exhibit highly dy-

namic memory usage and complex control flow, often exploiting recursion. They make

little, if any, use of floating-point operations.

This combination of characteristics means that symbolic computations are not well

suited to conventional HPC paradigms with their emphasis on iteration over floating

point arrays, and has motivated the development of scalable domain-specific scheduling

and management frameworks like SymGrid-Par [16] and SymGridPar2 (SGP2) [20].

This paper outlines the first ever modern HPC-scale parallelisation of a problem in

computational group theory, namely finding the invariant bilinear forms of Hecke al-

gebra representations. These bilinear forms, and Hecke algebras more generally, are an



important tool in the study of symmetries that arise in many branches of mathematics,

e. g. in topology and knot theory, with applications in theoretical physics and chemistry.

Our starting point is a sequential algorithm for computing bilinear forms, imple-

mented in GAP. Prior to parallelising, we optimise the sequential algorithm, reducing

sequential runtime by a factor of 350 (Section 2).4 The paper makes the following re-

search contributions.

(1) The development of a parallel algorithm for finding above bilinear forms. The

parallelisation exploits the new SGP2 framework designed for scalable GAP compu-

tations. Core elements of SGP2 are a set of algorithmic skeletons, implemented in the

parallel Haskell DSL HdpH [21], and a GAP binding for Haskell. We parallelise the

three most time-consuming phases of the algorithm: (a) solving homomorphic images

of linear systems over finite fields, (b) solving interpolation problems over rationals, and

(c) bilinear invariance check (over polynomial matrices). All algebraic computations are

performed by sequential GAP instances and coordinated by HdpH (Section 4).

(2) Some SGP2 skeletons are generic, e. g. the parMap parallel map of a function

over a list. Other skeletons are specific to the algebraic domain. Specifically to compute

with homomorphic images, a technique that is typical for a large class of algebraic

algorithms, we have developed a new algebraic skeleton parBufferTryReduce that

repeatedly checks whether the homomorphic results accumulated thus far are sufficient

to reconstruct the final result (Section 3).

(3) Many mathematicians have access to commodity clusters rather than HPCs, so

SGP2 is designed for both. We report good speedup and efficiency for a range of bilin-

ear form problems, both on a Beowulf cluster and on medium-scale configurations of

the HECToR UK supercomputer [12]. For example, one problem instance achieves a

speedup of 548, coordinating 992 GAP instances on 1024 cores (Section 5).

2 Algorithm for Finding Invariant Bilinear Forms

Background. Using the terminology of [8], let R = Z[x, x−1] be the ring of Laurent

polynomials in an indeterminate x. For the purpose of this paper, it suffices to know

that a Hecke algebra5 H is an R-algebra with a basis {Tw | w ∈ W} over R, where W
is a finite Coxeter group with set of generators S. In this paper, we only consider Hecke

algebras of type Em (m = 6, 7, 8), that is, W is the exceptional Coxeter group Em, and

the cardinality of the set of generators S is m.

An n-dimensional representation ρ of a Hecke algebra H is an R-algebra homo-

morphism from H to Mn(R), the R-algebra of n × n matrices over R. Note that ρ is

generated by the matrices ρ(Ts), s ∈ S. H is known to have a finite number of so-called

cell representations ρ. Moreover, Howlett and Yin [13] have brought each of these cell

representations ρ into a form where all m matrices ρ(Ts) are sparse.

Graham and Lehrer [11] and Geck [8] show that for any given ρ there exists a non-

trivial symmetric matrix Q ∈ Mn(R), unique up to scalar multiplication, such that

Q · ρ(Ts) = ρ(Ts)
T ·Q (1)

4 Such dramatic optimisations are not unusual in computer algebra as the typical high-level pre-

sentation of computational mathematics often omits opportunities for sequential optimisation.
5 More precisely, H is a one-parameter generic Iwahori-Hecke algebra.



for all generators ρ(Ts). We call Q the matrix of an invariant bilinear form.

Depending on the representation ρ, finding the invariant bilinear form Q may require

substantial computation. For each algebra type, the table below lists the number of cell

representations ρ, the range of dimensions of ρ and the range of spreads of degree

bounds of Laurent polynomials in Q. These numbers (and hence the difficulty of the

problem) vary by several orders of magnitude.

Hecke algebra type E6 E7 E8

number of cell representations ρ 25 60 112

dimension of ρ 6–90 7–512 8–7168

spread of degree bounds of polynomials in Q 29–54 45–95 65–185

Sequential algorithm for computing Q. In principle, Q can be computed by viewing

Equation (1) as a system of linear equations and solving for the entries of Q. How-

ever, solving linear systems over Z[x, x−1] is too expensive to obtain solutions for high

dimensional representations.

Instead, we solve the problem by interpolation. We view each entry of Q as a Lau-

rent polynomial with u−l+1 unknown coefficients, where u−l+1 is the spread between

lower degree bound l and upper degree bound u. Solving Equation (1) at u− l+1 data

points will provide enough information to compute the unknown coefficients by solv-

ing linear systems over the rationals instead of Z[x, x−1]. To avoid computing with very

large rational numbers (due to polynomials of high degree), we solve homomorphic im-

ages of Equation (1) modulo small primes and use the Chinese Remainder Theorem to

recover the rational values.

The algorithm takes as input m generators ρ(Ts) of dimension n, lower and upper

degree bounds l and u, and a finite set of small primes P . From the degree bounds, we

construct a set Vlu of u− l+1 small integers (excluding zero) to be used as data points

for interpolation. The primes in P must be chosen large enough not to divide any of the

integers in Vlu. The algorithm runs in three phases:

1. For all p ∈ P and v ∈ Vlu, GENERATE a modular interpolated solution Qvp of (1)

by instantiating the unknown x with v and solving the resulting system modulo p.

2. For all v ∈ Vlu, REDUCE the modular matrices Qvp by rational Chinese remain-

dering and obtain a rational interpolated solution Qv of (1). Construct each Laurent

polynomial qij in Q by gathering the (i, j)-entries of all Qv and solving a rational

linear system for the coefficients qij . Since Q is symmetric, there are (n + 1)n/2
such systems, each of dimension u− l + 1.

3. For all generators ρ(Ts), CHECK that the resulting Q satisfies (1) over Z[x, x−1].

After some (offline) pre-processing, the theory of Hecke algebras admits a particularly

efficient way to GENERATE Qvp. Instead of solving a linear system, the rows of Qvp are

computed by a spinning basis algorithm [9,17], multiplying, or spinning, the basis vec-

tor e of a pre-determined one-dimensional sub-space with n pre-determined products

of the generators ρ(Ts).
We observe that Q often has many identical entries. Therefore, the gather step of the

REDUCE phase filters duplicates to avoid repeatedly solving the same linear systems.

Typically, avoiding duplicates reduces the workload of REDUCE by a factor of 5 to 10.



Sequential optimisations. Profiling the GAP code on Hecke algebras of type E6 lead

to a number of improvements. The three most important ones are:

1. Avoiding unnecessary copying during the GENERATE phase by reducing the size

of lambda abstractions encoding the generators.

2. Reducing the memory footprint by storing generators in a sparse matrix format.

3. Spinning the basis more efficiently by exploiting associativity.

For type E6 these optimisations reduced sequential runtime of the algorithm (cumulative

over all representations) by a factor of about 350, and the memory footprint by an order

of magnitude from several GB to hundreds of MB.

3 The SymGridPar2 Framework

SGP2 system architecture. GAP [7] is the leading free system for computational dis-

crete algebra. It is designed to be natural to use for mathematicians; to be powerful

and flexible for experts and to be freely extensible so that it can encompass new math-

ematics. GAP supports very efficient linear algebra over small finite fields, multiple

representations of groups, subgroups, cosets and different types of group elements, and

backtrack search algorithms for permutation groups.

This case study used the most recent stable GAP distribution, GAP 4.6, which does

not support parallelism. Hence the sequential GAP 4.6 instances are coordinated over

the network by a distributed middleware, the SymGridPar2 (SGP2) framework [20].

The middleware occupies one core per multicore node and controls (via a RPC-like

protocol) independent GAP 4.6 instances running on the remaining cores (Figure 1).

SGP2 itself is implemented in HdpH [21], a domain-specific language (DSL) for

distributed-memory task parallelism, embedded in Haskell. SGP2 consists of two parts:

(1) a GAP binding, enabling calls from HdpH to GAP, including automatic marshaling,

and (2) a number of general-purpose and domain-specific parallel skeletons.

SGP2 programming model. HdpH is a monadic DSL, embedding a high-level co-

ordination language into Haskell. Figure 2 introduces two central types of the HdpH

DSL: Par, the monad type constructor for parallel computations, and Closure, the

type constructor for serialisable values including unevaluated computations, or thunks.

GAP GAP GAP GAP GAPGAP

multicoremulticore

...

R
P

C

multicore

SymGridPar2

Fig. 1. SGP2 system architecture.



-- HdpH types

type Par a -- parallel computation, returns result of type ’a’

type Closure a -- serialisable value/computation of type ’a’

type Task a= Closure (Par (Closure a)) -- serialisable parallel computation

-- returning serialisable result of type ’a’

-- sample general-purpose skeletons

parMap :: Closure (a → b) → [Closure a] → Par [Closure b]

parReduce :: Closure (a → a → a) → [Closure a] → Par (Closure a)

-- novel domain-specific skeleton; repeatedly reduces the results of a lazy list of input tasks

-- until the reducer computes a result

parBufferTryReduce :: ([Closure a] → Par (Maybe (Closure b))) -- reducer

→ Int -- reducer batch size

→ Int -- number tasks eval’d in parallel

→ [Task a] -- lazy list of input tasks

→ Par (Maybe (Closure b)) -- result

Fig. 2. HdpH types and some SymGridPar2 skeleton signatures.

A Task is defined as a serialisable monadic computation returning a serialisable result.

Thanks to serialisability, tasks and their results can be distributed over the network, and

HdpH exploits this to provide automatic load management by work stealing.

At the lowest level, HdpH exposes fork/join style primitives for parallel program-

ming. Using the primitives the HdpH library defines a number of general-purpose poly-

morphic skeletons (Figure 2), e. g. parallel maps (applying a function closure to a list

of closures, in parallel) and reductions. The skeletons evaluate their input lists strictly

as they coordinate monadic computations, and hence are unsuitable for computing with

potentially infinite lazy lists.

Our case study requires solving an unknown number of subproblems in parallel un-

til there are enough intermediate results to construct the solution. More specifically, the

algorithm of Section 2 requires the use of an unknown number of primes in the GEN-

ERATE phase. A typical Haskell program would parametrise the GENERATE phase with

an infinite lazy list of primes, and rely on demand from the REDUCE phase to decide

how many primes are actually needed. As the monadic context of HdpH precludes lazy

lists, we capture this domain-specific pattern6 in a new skeleton that combines a task

farm with a reducer.

The new parBufferTryReduce skeleton takes as input (in reverse order) a lazy

list of tasks, the number of tasks to evaluate in parallel, the reducer batch size and the re-

ducer function. A call to parBufferTryReduce f b n tasks continually forks

from the head of list tasks, aiming to keep n tasks under evaluation, accumulating a

list accu of intermediate results (not necessarily in the order of tasks). The reducer f

is executed every time the length of accu is a multiple of the batch size b. The skeleton

returns a result as soon as the reducer finds one; it returns Nothing only if the reducer

fails to produce a result even after all tasks are evaluated.

6 This pattern is common in algebraic computations that generate modular subproblems, e. g.

linear system solving based on modular arithmetic and Chinese remaindering.



The HdpH DSL greatly simplifies developing domain-specific skeletons, particu-

larly skeletons with complex parallel coordination such as parBufferTryReduce.

A case in point is the implementation of the latter spanning less than 90 lines of code.

4 Parallel Algorithm for Finding Invariant Bilinear Forms

Each of the three phases of the sequential algorithm (Section 2) contains significant

amounts of parallelism. Deciding what and how to parallelise is guided by the ratio

between computation and communication costs on the distributed target architectures.

Parallel phases. Figure 3 shows the parallel structure of the algorithm to compute Q,

with lower and upper degree bounds l and u, for an n-dimensional cell representation

given by m generators ρ(Ts); P is the set of primes used in the GENERATE phase.

The GENERATE phase forks |P |(u−l+1) parallel tasks, each taking as input a pair

of integers (p, v) ∈ P × Vlu, where Vlu is defined as in Section 2. Each task runs the

spinning basis algorithm to compute an n × n matrix Qvp of integers modulo p. Thus

the input size of GENERATE tasks is small and constant but the output size is quadratic

in the dimension.

The REDUCE phase first constructs k ≤ (n + 1)n/2 interpolation problems by

Chinese remaindering and filtering duplicates, then forks k parallel tasks solving the

interpolation problems. Each task takes as input a vector of u − l + 1 rational values,

solves a linear system of u− l + 1 equations over the rationals, and returns a vector of

u− l+1 polynomial coefficients. Thus input and output size of REDUCE tasks depend

(linearly) on the degree spread (and on the size of the rational numbers, which depends

on the choice of P .)

The CHECK phase forks m parallel tasks, each checking the validity of Equation (1)

w. r. t. one generator ρ(Ts). To this end, each task requires as input the whole matrix Q,

i. e. (n + 1)n/2 polynomials with up to u − l + 1 rational coefficients. Thus the input

size of CHECK tasks is quadratic in the dimension and linear in the degree spread (and

depends on the size of the rational coefficients), whereas the output is a single bit.

Overall coordination. Figure 3 depicts a parallel structure where REDUCE synchro-

nises on the completion of GENERATE, which depends on the set of primes P . Instead,

polynomial matrix mult

m tasks

rational linear solve

<= (n+1)*n/2 tasks

GENERATE CHECKREDUCE

|P|*(u−l+1) tasks

modular basis spin

filter duplicates
Chinese remainder;

Fig. 3. Structure of parallel algorithm for computing invariant bilinear forms Q.



the parBufferTryReduce skeleton (Section 3) decouples GENERATE from RE-

DUCE: The list tasks is a (possibly lazy and infinite) list of GENERATE tasks, the

reducer f runs the REDUCE phase followed by the CHECK phase, and the batch size b

determines the frequency of (attempted) reductions.

Note that most tasks in Figure 3 run on GAP workers and have a small memory

footprint. However, the big task constructing the interpolation problems at the begin-

ning of the REDUCE phase is executed on a dedicated GAP instance, the GAP master,

because it must gather all Qvp matrices and mangle them simultaneously, which may

require substantial amounts of memory.

5 Evaluation of Parallel Performance

We evaluate the parallel algorithm (Section 4) on all cell representations (reps) for

Hecke algebra of type E7 and on the smaller reps of type E8. The reps for type E6 don’t

warrant parallel execution as their sequential runtimes are less than 150s. We evaluate

on three different architectures:

– up to 16 nodes of a commodity cluster (Beowulf, 8 cores/node, 2.0GHz Intel Xeon

CPUs, 12GB RAM/node, Gigabit Ethernet),

– up to 32 nodes of a Cray XE6 (HECToR [12], 32 cores/node, 2.3GHz AMD Inter-

lagos CPUs, 32GB RAM/node, Cray Gemini interconnect), and

– a large memory NUMA server (Cantor, 48 cores, 2.8GHz AMD Opteron CPUs,

512GB RAM).

Figure 4 displays our results, organised into 2 columns: to the left data about the E7 reps

3 to 60, to the right about the E8 reps 3 to 16; reps 1 and 2 for E7 resp. E8 are trivial and

easy to solve sequentially.

Problem size. The top row of Figure 4 plots the representations’ dimensions and degree

spreads (right y-axis) as well as the numbers of GENERATE and REDUCE tasks (left y-

axis); recall that the number of CHECK tasks is constant at 7 and 8, respectively.

We observe that the number of GENERATE tasks tracks the degree spreads curve,

whereas the number of REDUCE tasks oscillates by an order of magnitude or more

though its trend is rising with the dimension.

To obtain reproducible results, the set of primes was chosen somewhat bigger than

minimal, and the batch size parameter of the parBufferTryReduce skeleton was

set so high that the reducer runs only once, after the GENERATE phase is completed.

Runtime. The second row of Figure 4 plots parallel runtimes, on 16 Beowulf nodes

(using 15 * 7 + 1 = 106 GAP workers) in the case of E7, and on Cantor (using 40

GAP workers) in the case of E8. The graph for E8 also plots the total work, i. e. the

cumulative runtime of all tasks, and the time spent in the sequential part of the REDUCE

phase. The graph for E7 only plots the parallel work, i. e. the cumulative runtime of all



Fig. 4. Performance of parallel algorithm for finding invariant bilinear forms Q, E7 to the left, E8

to the right. Top to bottom: problem size, runtime, speedup, size of GAP tasks.



parallel tasks.7 The reported times reflect single experiments as a statistically significant

number of repetitions would be prohibitively expensive.

We observe that the amount of (total, parallel, sequential) work and the parallel

runtime oscillate noisily due to the dramatic oscillation in the number of REDUCE tasks.

The trend of work and runtime appears to grow with the dimension; the degree spread

appears to have no influence.

Speedup. The third row of Figure 4 plots speedups on 16 Beowulf nodes (E7, using 106

GAP workers) and on Cantor (E8, using 40 GAP workers).

Since sequential runtimes are not available, we compute speedups w. r. t. parallel

work (for E7) or total work (for E8). This method systematically underestimates the true

speedup (particularly for E7) as it fails to account for some of the costs of sequential

execution, e. g. more time spent on sequential garbage collection.

We observe that most E7 reps up to 22 are too small to produce significant speedups

on 16 Beowulf nodes. Reps 39 and above, and particularly reps above 55, suffer from

Amdahl’s law due to significant time spent in the sequential part of REDUCE. Similarly,

the E8 reps up to 5 are too small for good speedups on Cantor. However, we cannot

observe the effect of Amdahl’s law for E8; there is so much parallel work that speedups

for reps 11 to 16 are close to the maximum of 40× despite rep 16 spending more than

1000 seconds in the sequential phase.

For the E7 reps 23 to 38, we also investigate strong scaling from 4 to 8 to 16 Beowulf

nodes. We observe that speedup oscillations increase with scale, i. e. some representa-

tions scale, others don’t; best speedup (53×) is achieved for rep 38, corresponding to

a best case efficiency of 50%. The picture is similar for the E8 reps 11 to 15 when

investigating strong scaling from 4 to 32 nodes on HECToR; rep 11 achieves the top

speedup of 548×, top efficiency of 55%, but the other reps do not scale so well. Note

that for multi-phase symbolic computations with irregular and dynamic parallelism an

efficiency of 40% is good, as previously reported on smaller architectures [15,16,26].

Task size. The bottom row of Figure 4 shows the average, minimum and maximum

runtimes of GENERATE, REDUCE and CHECK tasks; the time recorded is GAP compute

time, excluding communication and marshaling overheads.8

We observe that CHECK tasks are generally expensive but regular, and REDUCE

tasks are largely regular, with only some reps showing moderate irregularity (E7 rep 48

is an outlier). However, GENERATE tasks are wildly irregular, varying by at least two

orders of magnitude. The average cost of GENERATE and CHECK tasks appears to grow

with the dimension, whereas the cost of REDUCE tasks appears to depend strongly on

the degree spread.

7 We failed to record the runtime of the sequential REDUCE step for E7, thus can’t provide total

work; parallel work is an under-approximation.
8 Overheads for calling GAP, including marshaling and data transfer, vary with task input and

output size. For E7 GENERATE tasks on Beowulf, for instance, overheads generally stay two

orders of magnitude below average task size, ranging from about 10−4 to about 0.1 seconds.



Limitations. Two issues preclude solving the remaining E8 reps with the current algo-

rithm. First, the sequential time spent in the REDUCE phase, which grows quadratically

with the dimension, obliterates speedups beyond dimension 200 (for E7). The parallel

algorithm needs to be redesigned to scale to dimensions between 1000 and 2000 (which

are typical of E8), let alone the maximum of 7168.

The second issue is the memory consumption, growing quadratically in the dimen-

sion, of the GAP master at the start of the REDUCE phase. The 12GB RAM of a Beowulf

node prove insufficient already from E8 rep 12, dimension 168.

6 Related Work

Computational algebra skeletons. This paper gives further evidence to the success of

a parallel pattern, or skeleton, approach [2] in the domain of computational mathemat-

ics. We combine specialist domain knowledge, in the area of computational group the-

ory, with language and systems knowledge, specifically for high-level orchestration of

parallelism on large-scale clusters. This continues our work on domain-specific parallel

patterns for symbolic computation, and some recent examples are as follows. We have

designed a parallel Orbit, that achieves a speedup of up to 36 on a 64-core machine [14];

a critical-pair-completion pattern, with the Gröbner Bases computation as one instance

that achieves a speedup of 6.9 on an 8-core machine; and the multiple-homomorphic

images pattern, that achieves speedups of up to 11.9 on a 16-node cluster [18].

Parallel computational algebra. Several computer algebra systems offer dedicated

support for parallelism (see [10, Sec 2.18] and [25]). Distributed Maple [26] provides a

portable Java-based communication layer to permit interaction of Maple instances over

a network. It uses future-based language constructs for synchronisation and communi-

cation, and has been used to parallelise several computational geometry algorithms. The

Sugarbush [1] system is another distributed-memory extension of Maple, which uses

Linda as coordination language. A distributed-memory parallel extension to GAP is the

GAPMPI [3] package, which provides access to MPI functionality from within GAP. In

contrast to this model of explicit message passing, our approach provides higher level

abstractions, such as the parBufferTryReduce skeleton.

The TOP-C system provides task-oriented parallelism on top of a distributed shared-

memory system [4], implementing several symbolic applications, including parallel

computations over Hecke algebras [6] on networks of SPARC workstations.

Several efforts of parallelising computational algebra have targeted previous gen-

erations of HPC architectures. Sibert et al [27] describe the implementation of basic

arithmetic over finite fields on a Connection Machine. Roch et al [24] discuss the im-

plementation and performance of a parallel Gröbner basis algorithm on the Floating

Point System hypercube Tesseract 20 with 16 nodes. Another parallel Gröbner basis

algorithm is implemented on a Cray Y-MP by Neun and Melenek [23] and later on a

Connection Machine by Loustaunau and Wang [19]. We are not aware of any other

work within the last 20 years that targets HPC for computational algebra.

More recently main-stream computer algebra systems have developed interfaces

for large-scale distribution, aiming to exploit Grid infrastructures [22]. The community



effort of defining a protocol for symbolic data exchange on such infrastructures allows

interchange between different computer algebra systems [16]. In contrast to these Grid-

based infrastructures, our technology targets massively parallel supercomputers.

Invariant bilinear forms for Hecke algebra representations. The invariant bilinear

forms Q carry data that enables us to find so-called Jantzen filtrations [17], which sim-

plify the general understanding of transformations of Hecke algebra representations.

Such bilinear forms Q for Hecke algebras of type E7 and E8 have previously been

computed by Geck and Müller in an ad-hoc way; their paper [9] describes the math-

ematical basis for their approach but does not consider parallelism or evaluate perfor-

mance. This paper and [17] are part of an ongoing project, started by Geck, to build a

systematic GAP database of bilinear forms Q for Hecke algebras of type E6,E7 and E8.

7 Conclusion

We have described what we believe is the first ever parallelisation of an algebraic com-

putation on a modern HPC. The computation of invariant bilinear forms for Hecke

algebra representations is multi-phase and exhibits irregular parallelism over the com-

plex control and data structures typical of computer algebra. The parallelisation ex-

ploits the new skeleton-based SGP2 framework and required the development of a new

domain-specific skeleton, parBufferTryReduce. The performance on a medium-

scale HPC configuration and a commodity cluster is good, if noisy, reflecting the com-

plexity of the problems solved. For example, for medium-size Hecke algebra represen-

tations (23 to 38) of type E7 we obtain speedups of between 25 and 53 on 16 Beowulf

nodes (128 cores, 106 GAP workers). For small E8 representations (11 to 15) we ob-

tain speedups of between 116 and 548 on 32 HECToR nodes (1024 cores, 992 GAP

workers).

In related and ongoing work we report good performance results for small algebraic

kernels on far larger HPC configurations, e. g. weak scaling of the sumEuler kernel

(summing up Euler’s ϕ function over large intervals) on up to 32K HECToR cores [20].

Core failures are predicted to rise along with the number of cores. To insure large and

expensive symbolic computations against core failures, we have implemented and are

evaluating automatic recovery of idempotent computations in SGP2 [28].

Acknowledgements. This research was supported by the grants HPC-GAP (EPSRC

EP/G05553X), AJITPar (EPSRC EP/L000687/1), RELEASE (EU FP7-ICT 287510).

References

1. Char, B.W.: Progress report on a system for general-purpose parallel symbolic algebraic

computation. In: ISSAC 1990, Tokyo, Japan. pp. 96–103. ACM Press (1990)

2. Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT

Press (1989)

3. Cooperman, G.: GAP/MPI: Writing parallel programs in GAP easily. Tech. rep., Northeast-

ern University, Boston, USA (1998)



4. Cooperman, G.: TOP-C: Task-oriented parallel C for distributed and shared memory. In:

Workshop on Wide Area Networks and High Performance Computing, Essen, Germany. pp.

109–117. LNCS 249, Springer (1999)

5. Cooperman, G.: Parallel GAP: mature interactive parallel computing. In: Groups and Com-

putation III, Columbus, OH, USA. pp. 123–138. De Gruyter (2001)

6. Cooperman, G., Tselman, M.: New sequential and parallel algorithms for generating high di-

mension Hecke algebras using the condensation technique. In: ISSAC 1996, Zürich, Switzer-

land. pp. 155–160. ACM Press (1996)

7. GAP Group: GAP – groups, algorithms, and programming (2007), http://www.

gap-system.org

8. Geck, M.: Hecke algebras of finite type are cellular. Invent. Math. 169, 501–517 (2007)

9. Geck, M., Müller, J.: James’ conjecture for Hecke algebras of exceptional type, I. J. Algebra

321(11), 3274–3298 (2009)

10. Grabmeier, J., Kaltofen, E., Weispfenning, V.: Computer Algebra Handbook. Springer

(2003)

11. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

12. HECToR: UK National Supercomputing Service, www.hector.ac.uk

13. Howlett, R.B.: W-graphs for the irreducible representations of the Hecke algebras of type E7

and E8, private communication with J. Michel (December 2003)

14. Janjic, V., et al: Space exploration using parallel orbits. In: ParCo 2013, Munich, Germany.

Advances in Parallel Computing, vol. 25, pp. 225–232. IOS Press (2014)

15. Konovalov, A., Linton, S.: Parallel computations in modular group algebras. In:

PASCO 2010, Grenoble, France. pp. 141–149. ACM Press (2010)

16. Linton, S., et al: Easy composition of symbolic computation software using SCSCP. J. Symb.

Comput. 49, 95–19 (Feb 2013)

17. Livesey, D.: High Performance Computations with Hecke Algebras: Bilinear Forms and

Jantzen Filtrations. Ph.D. thesis, University of Aberdeen (2014)

18. Loidl, H.W., et al: Comparing parallel functional languages: Programming and performance.

Higher-order and Symbolic Computation 16(3), 203–251 (2003)

19. Loustaunau, P., Wang, P.Y.: Towards efficient parallelizations of a computer algebra algo-

rithm. In: Frontiers of Massively Parallel Computation, McLean, VA, USA. pp. 67–74. IEEE

(1992)

20. Maier, P., Stewart, R., Trinder, P.W.: Reliable scalable symbolic computation: The design of

SymGridPar2. Computer Languages, Systems & Structures 40(1), 19–35 (2014)

21. Maier, P., Trinder, P.: Implementing a high-level distributed-memory parallel Haskell in

Haskell. In: IFL 2011, Lawrence, KS, USA. pp. 35–50. LNCS 7257, Springer (2012)

22. Maple Grid Computing Toolbox, www.maplesoft.com/products/toolboxes/

GridComputing

23. Neun, W., Melenk, H.: Very large Gröbner basis calculations. In: CAP 1990, Ithaca, USA.

pp. 89–99. LNCS 584, Springer (1992)

24. Roch, J.L., Sénéchaud, P., Françoise Siebert-Roch, F., Villard, G.: Computer algebra on

MIMD machine. In: ISSAC 1998, Rome, Italy. pp. 423–439. LNCS 358, Springer (1989)

25. Roch, J.L., Villard, G.: Parallel computer algebra. Tech. rep., IMAG, France (1997), tutorial

at ISSAC 1997

26. Schreiner, W., Mittermaier, C., Bosa, K.: Distributed Maple: parallel computer algebra in

networked environments. J. Symb. Comput. 35(3), 305–347 (2003)

27. Sibert, E.E., Mattson, H.F., Jackson, P.: Finite field arithmetic using the Connection Machine.

In: CAP 1990, Ithaca, USA. pp. 51–61. LNCS 584, Springer (1992)

28. Stewart, R.: Reliable Massively Parallel Symbolic Computing: Fault Tolerance for a Dis-

tributed Haskell. Ph.D. thesis, Heriot-Watt University (2013)

http://www.gap-system.org
http://www.gap-system.org
www.hector.ac.uk
www.maplesoft.com/products/toolboxes/GridComputing
www.maplesoft.com/products/toolboxes/GridComputing

