346 research outputs found
Chemical Abundance Constraints on White Dwarfs as Halo Dark Matter
We examine the chemical abundance constraints on a population of white dwarfs
in the Halo of our Galaxy. We are motivated by microlensing evidence for
massive compact halo objects (Machos) in the Galactic Halo, but our work
constrains white dwarfs in the Halo regardless of what the Machos are. We focus
on the composition of the material that would be ejected as the white dwarfs
are formed; abundance patterns in the ejecta strongly constrain white dwarf
production scenarios. Using both analytical and numerical chemical evolution
models, we confirm that very strong constraints come from Galactic Pop II and
extragalactic carbon abundances. We also point out that depending on the
stellar model, significant nitrogen is produced rather than carbon. The
combined constraints from C and N give from
comparison with the low C and N abundances in the Ly forest. We note,
however, that these results are subject to uncertainties regarding the
nucleosynthesis of low-metallicity stars. We thus investigate additional
constraints from D and He, finding that these light elements can be kept
within observational limits only for \Omega_{WD} \la 0.003 and for a white
dwarf progenitor initial mass function sharply peaked at low mass (2).
Finally, we consider a Galactic wind, which is required to remove the ejecta
accompanying white dwarf production from the galaxy. We show that such a wind
can be driven by Type Ia supernovae arising from the white dwarfs themselves,
but these supernovae also lead to unacceptably large abundances of iron. We
conclude that abundance constraints exclude white dwarfs as Machos. (abridged)Comment: Written in AASTeX, 26 pages plus 4 ps figure
Deuterium Toward WD1634-573: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
We use Far Ultraviolet Spectrocopic Explorer (FUSE) observations to study
interstellar absorption along the line of sight to the white dwarf WD1634-573
(d=37.1+/-2.6 pc). Combining our measurement of D I with a measurement of H I
from Extreme Ultraviolet Explorer data, we find a D/H ratio toward WD1634-573
of D/H=(1.6+/-0.5)e-5. In contrast, multiplying our measurements of D I/O
I=0.035+/-0.006 and D I/N I=0.27+/-0.05 with published mean Galactic ISM gas
phase O/H and N/H ratios yields D/H(O)=(1.2+/-0.2)e-5 and
D/H(N)=(2.0+/-0.4)e-5, respectively. Note that all uncertainties quoted above
are 2 sigma. The inconsistency between D/H(O) and D/H(N) suggests that either
the O I/H I and/or the N I/H I ratio toward WD1634-573 must be different from
the previously measured average ISM O/H and N/H values. The computation of
D/H(N) from D I/N I is more suspect, since the relative N and H ionization
states could conceivably vary within the LISM, while the O and H ionization
states will be more tightly coupled by charge exchange.Comment: 23 pages, 5 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty;
accepted by ApJ Supplemen
Data Processing of Lunar Infrared Measurements at High Spatial and Radiometric Resolution to Obtain Brightness Temperatures Scientific Report No. 9
Data processing of lunar infrared measurements at high spatial and radiometric resolution to obtain brightness temperature
The Ionization of the Local Interstellar Medium, as Revealed by FUSE Observations of N, O and Ar toward White Dwarf Stars
FUSE spectra of the white dwarf stars G191-B2B, GD 394, WD 2211-495 and WD
2331-475 cover the absorption features out of the ground electronic states of N
I, N II, N III, O I and Ar I in the far ultraviolet, providing new insights on
the origin of the partial ionization of the Local Interstellar Medium (LISM),
and for the case of G191-B2B, the interstellar cloud that immediately surrounds
the solar system. Toward these targets the interstellar abundances of Ar I, and
sometimes N I, are significantly below their cosmic abundances relative to H I.
In the diffuse interstellar medium, these elements are not likely to be
depleted onto dust grains. Generally, we expect that Ar should be more strongly
ionized than H (and also O and N whose ionizations are coupled to that of H via
charge exchange reactions) because the cross section for the photoionization of
Ar I is very high. Our finding that Ar I/H I is low may help to explain the
surprisingly high ionization of He in the LISM found by other investigators.
Our result favors the interpretation that the ionization of the local medium is
maintained by a strong EUV flux from nearby stars and hot gases, rather than an
incomplete recovery from a past, more highly ionized condition.Comment: 13 pages, 2 figures. To appear in a special issue of the
Astrophysical Journal Letters devoted to the first scientific results from
the FUSE missio
Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
Far Ultraviolet Spectroscopic Explorer observations are presented for
WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a
distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40
per 20 km/s resolution element and cover the wavelength range 905-1187 \AA.
LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II,
N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an
ionized nitrogen fraction of > 0.23. We determine the ratio (2). Assuming a standard interstellar
oxygen abundance, we derive . Using the
value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I
ratio is (2).Comment: accepted for publication in the ApJ
Suppressed Far-UV stellar activity and low planetary mass-loss in the WASP-18 system
WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (R′HK activity parameter lies slightly below the basal level; there is no significant time-variability in the log R′HK value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of HST aimed at explaining this anomaly. From the star’s spectral energy distribution, we infer the extinction (E(B − V) ≈ 0.01mag) and then the ISM column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s−1 cm−2. We employ the rescaled XUV solar fluxes to model of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10−20MJ Gyr−1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape
First detection of triply-deuterated methanol
We report the first detection of triply-deuterated methanol, with 12 observed
transitions, towards the low-mass protostar IRAS 16293-2422, as well as
multifrequency observations of 13CH3OH, used to derive the column density of
the main isotopomer CH3OH. The derived fractionation ratio [CD3OH]/[CH3OH]
averaged on a 10'' beam is 1.4%. Together with previous CH2DOH and CHD2OH
observations, the present CD3OH observations are consistent with a formation of
methanol on grain surfaces, if the atomic D/H ratio is 0.1 to 0.3 in the
accreting gas. Such a high atomic ratio can be reached in the frame of
gas-phase chemical models including all deuterated isotopomers of H3+.Comment: Accepted by A&
Lyman-alpha Absorption from Heliosheath Neutrals
We assess what information HST observations of stellar Ly-alpha lines can
provide on the heliosheath, the region of the heliosphere between the
termination shock and heliopause. To search for evidence of heliosheath
absorption, we conduct a systematic inspection of stellar Ly-alpha lines
reconstructed after correcting for ISM absorption (and
heliospheric/astrospheric absorption, if present). Most of the stellar lines
are well centered on the stellar radial velocity, as expected, but the three
lines of sight with the most downwind orientations relative to the ISM flow
(Chi1 Ori, HD 28205, and HD 28568) have significantly blueshifted Ly-alpha
lines. Since it is in downwind directions where heliosheath absorption should
be strongest, the blueshifts are almost certainly caused by previously
undetected heliosheath absorption. We make an initial comparison between the
heliosheath absorption and the predictions of a pair of heliospheric models. A
model with a complex multi-component treatment of plasma within the heliosphere
predicts less absorption than a model with a simple single-fluid treatment,
which leads to better agreement with the data. Finally, we find that
nonplanetary energetic neutral atom (ENA) fluxes measured by the ASPERA-3
instrument on board Mars Express, which have been interpreted as being from the
heliosheath, are probably too high to be consistent with the relative lack of
heliosheath absorption seen by HST. This would argue for a local interplanetary
source for these ENAs instead of a heliosheath source.Comment: 27 pages, 7 figures, AASTEX v5.0, accepted by Ap
The Active Corona of HD 35850 (F8 V)
We present Extreme Ultraviolet Explorer spectroscopy and photometry of the
nearby F8 V star HD 35850 (HR 1817). The EUVE spectra reveal 28 emission lines
from Fe IX and Fe XV to Fe XXIV. The Fe XXI 102, 129 A ratio yields an upper
limit for the coronal electron density, log n < 11.6 per cc. The EUVE SW
spectrum shows a small but clearly detectable continuum. The line-to-continuum
ratio indicates approximately solar Fe abundances, 0.8 < Z < 1.6. The resulting
emission-measure distribution is characterized by two temperature components at
log T of 6.8 and 7.4. The EUVE spectra have been compared with non-simultaneous
ASCA SIS spectra of HD 35850. The SIS spectrum shows the same temperature
distribution as the EUVE DEM analysis. However, the SIS spectral firs suggest
sub-solar abundances, 0.34 < Z < 0.81. Although some of the discrepancy may be
the result of incomplete X-ray line lists, we cannot explain the disagreement
between the EUVE line-to-continuum ratio and the ASCA-derived Fe abundance.
Given its youth (t ~ 100 Myr), its rapid rotation (v sin i ~ 50 km/s), and its
high X-ray activity (Lx ~ 1.5E+30 ergs/s), HD 35850 may represent an activity
extremum for single, main-sequence F-type stars. The variability and EM
distribution can be reconstructed using the continuous flaring model of Guedel
provided that the flare distribution has a power-law index of 1.8. Similar
results obtained for other young solar analogs suggest that continuous flaring
is a viable coronal heating mechanism on rapidly rotating, late-type,
main-sequence stars.Comment: 32 pages incl. 14 figures and 3 tables. To appear in the 1999 April
10 issue of The Astrophysical Journa
A Far-Ultraviolet Spectroscopic Survey of Luminous Cool Stars
FUSE ultraviolet spectra of 8 giant and supergiant stars reveal that high
temperature (3 X 10^5 K) atmospheres are common in luminous cool stars and
extend across the color-magnitude diagram from Alpha Car (F0 II) to the cool
giant Alpha Tau (K5 III). Emission present in these spectra includes
chromospheric H-Lyman Beta, Fe II, C I, and transition region lines of C III, O
VI, Si III, Si IV. Emission lines of Fe XVIII and Fe XIX signaling temperatures
of ~10^7 K and coronal material are found in the most active stars, Beta Cet
and 31 Com. A short-term flux variation, perhaps a flare, was detected in Beta
Cet during our observation. Stellar surface fluxes of the emission of C III and
O VI are correlated and decrease rapidly towards the cooler stars, reminiscent
of the decay of magnetically-heated atmospheres. Profiles of the C III (977A)
lines suggest that mass outflow is underway at T~80,000 K, and the winds are
warm. Indications of outflow at higher temperatures (3 X 10^5K) are revealed by
O VI asymmetries and the line widths themselves. High temperature species are
absent in the M-supergiant Alpha Ori. Narrow fluorescent lines of Fe II appear
in the spectra of many giants and supergiants, apparently pumped by H Lyman
Alpha, and formed in extended atmospheres. Instrumental characteristics that
affect cool star spectra are discussed.Comment: Accept for publication in The Astrophysical Journal; 22 pages of
text, 23 figures and 8 table
- …