DATA PROCESSING OF LUNAR INFRARED MEASUREMENTS
 AT HIGH SPATIAL AND RADIOMETRIC RESOLUTION TO OBTAIN BRIGHTNESS TEMPERATURES

by
Hector C. Ingrao, Andrew T. Young
and
Harold Boeschenstein, Jr. Mary F. C. Leyland Yung C. Hu Jeffrey L. Linsky
Elgie G. Levin John B. Newell

Harvard College Observatory
Cambridge, Massachusetts (USA)

Scientific Report No. 9 NASA RESEARCH GRANT NO. NsG 64-60

June 1, 1966

Prepared For
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

DATA PROCESSING OF LUNAR INFRARED MEASUREMENTS AT HIGH SPATIAL AND RADIOMETRIC RESOLUTION TO OBTAIN BRIGHTNESS TEMPERATURES

Hector C. Ingrao*, Andrew T. Young**

and
Harold Boeschenstein, Jr.* Mary F. C. Leyland*
Young C. Mu***
Elgie C. Levin*
Jeffrey L. Linsky \dagger
John B. Newell***

ABSTRACT
A unique data processing of lunar infrared measurements at high spatial and radiometric resolution to obtain brightness temperature is presented. This system takes into account all the instrumental parameters and observing conditions, including amount of ozone, carbon dioxide, and precipitable water along the path. Possible drifts in the instrument or changes in the sky emittance are also handled by the system. Moreover, for each line of scan the accuracy in the location of the resolution element on the lunar disk is also given, taking into account systematic errors such as the differential atmospheric refraction between visible and infrared rays.

The programming used in the data processing package produces a compact simplified data file oriented towards ease of retrieval of various forms (i.e., plotting of different subsets of the data). The techniques used to obtain this data file depend on a high degree of separation of different phases of the data-reduction. This separation is reflected in the organization of the program as a very simple supervisory program with many subroutines, each performing highly specific calculations.

[^0]
CONTENTS

I. INTRODUCTION 1
II. BASIC EQUATIONS RELEVANT TO THE REDUCTION
OF RADIOMETRIC AND ASTROMETRIC MEASUREMENTS 3
III. COMPUTING PROCEDURE 9
A. Introduction 9
B. Description of LUNAR 9
C. Programs 12
D. Discussion of the Programs 14
IV. COMPUTER OUTPUT 33
APPENDICES 35
NOTATIONS AND UNITS 89
REFERENCES 93

This report will discuss in detail the data processing of lunar infrared measurements to obtain brightness temperature by means of an electronic computer. This program is tailored to reduce the data gathered with the radiation pyrometer developed at Harvard College Observatory (1). The radiometric data are obtained in analog form, and the astrometric data photographically.

The observational technique for this data-reduction scheme is divided into two aspects: astrometric and radiometric. Since it is of paramount interest to correlate the radiometric measurements with the visual features of the lunar surface, we gave equal weight to both aspects of the measurements.

The observational technique and data-reduction procedures assume that absolute, as well as relative, measurements will be carried out. This implies that serious consideration has been given to the problem of the atmospheric transmittance and changes in atmospheric emission during a scan (drift assumed linear).

The data are processed by means of the IBM 7094 computer and special care has been taken to minimize handling. Since the block diagram of the data flow given in Figure 1 is self-explanatory, we feel that it does not require further description.

II. BASIC EQUATIONS RELEVANT TO THE REDUCTION OF RADIOMETRIC AND ASTROMETRIC MEASUREMENTS

The equations and observational technique related to the radiometric measurements have been described in previous reports (1,2). This report will include the equations that have direct bearing on the data-reduction scheme.

Figure 2 shows the block diagram of the electronic circuitry of the radiation pyrometer relevant to the signal processing. The diagram also gives the voltages at each node produced by the radiant power I on the detector.

In the present form of our pyrometer the output is recorded in analog form by means of a pen recorder. The measurement d of the total deflection of the recording pen on the paper chart recorder is proportional to the radiant power I. The factor of proportionality $K(t)$, called constant of the pyrometer, is expressed by

$$
\begin{equation*}
K(t)=\frac{I}{d(t)} \tag{1}
\end{equation*}
$$

where the time dependence allows for the possible changes with time in the constant of the pyrometer.

The measurement d is related to the instrumental parameters and readings by:

$$
\begin{equation*}
d_{m} K(t)=d K(t)+[\pm n c \pm 0.25 K(t) N \pm q K(t)] \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
d_{m}= & \text { observed deflection of the recording pen on the paper } \\
& \text { chart recorder, } \mathrm{mm} \\
K(t)= & \text { constant of the pyrometer, } \$ \mathrm{~mm}^{-1}
\end{aligned}
$$

A = ATTENUATION RATIO AT THE INPUT OF TH
$a=$ ZERO SUPPRESSION, V
$b=$ PEN CENTERING VOLTAGE, V
$c=$ CONSTANT OF THE BUCKING SIGNAL COU
$d=$ TOTAL DEFLECTION OF THE RECORDING F
$d_{m}=$ OBSERVED DEFLECTION OF THE RECORD
$e=$ BUCKING SIGNAL, V
$G_{1}=$ PREAMPLIFIER VOLTAGE GAIN
$G_{2}=$ PHASE CONTROL RECTIFIER VOLTAGE GA
$\mathrm{G}_{3}=$ DIRECT CURRENT VACUUM TUBE VOLTM
$G_{4}=$ AMPLIFIER GALVANOMETER GAIN
I = RADIANT POWER ON THE DETECTOR,W
$K(t)=$ CONSTANT OF THE PYROMETER, $W \mathrm{~mm}^{-1}$
N = ZERO SUPPRESSION, GIVEN IN COUNTER F
$n=$ BUCKING SIGNAL, GIVEN IN COUNTER REA
q = PEN CENTER DEFLECTION, mm
R = DETECTOR RESPONSIVITY, $V W^{-1}$
$\tau_{0}=$ INSTRUMENTAL TRANSMITTANCE

E AMPLIFIER GALVANOMETER

TER (watts per increment)
EN, mm
NG PEN, mm

IN

ETER GAIN

IEADING
JING

FIG. 2. Block diagram of the electronic circuitry of the radiation pyrometer, relevant to the processing of the radiant power on the infrared detector.

$$
\begin{aligned}
& \mathrm{n}=\text { bucking signal qiven in counter reading } \\
& \mathrm{c}=\text { constant of the bucking signal counter } \\
& \mathrm{N}=\text { zero suppression given in counter reading } \\
& \mathrm{q}=\text { pen center deflection, mm }
\end{aligned}
$$

The values of n, N, and q are supplied in the observation sheet and the value of c is measured following the same procedure as for $K(t)$.

The radiant power I of the calibration signal is related by Eq. (1) and by the following expression:

$$
\begin{equation*}
K\left(t_{c}\right) d_{c}=\frac{\pi A_{d}}{4 F_{c}^{2}}\left\{S\left[T_{C}\left(t_{c}\right)\right]-S\left[T_{R}\left(t_{c}\right)\right]\right\} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
d_{c}= & \text { total deflection of the recording pen due to the } \\
& \text { calibration signal, } \mathrm{mm} \\
A_{d}= & \text { area of the detector, } \mathrm{cm}^{2} \\
\mathrm{~F}_{\mathrm{c}}= & f \text {-number in the calibration mode of operation }
\end{aligned}
$$

$$
\begin{align*}
& S\left[T_{C}\left(t_{c}\right)\right]=\varepsilon_{C} \int_{0}^{\infty} N\left[\lambda, T_{C}\left(t_{C}\right)\right] \tau_{d}(\lambda) \tau_{f}(\lambda) d \lambda \tag{4}\\
& S\left[T_{R}\left(t_{c}\right)\right]=\varepsilon_{R} \int_{0}^{\infty} N\left[\lambda, T_{R}\left(t_{c}\right)\right] \tau_{d}(\lambda) \tau_{f}(\lambda) d \lambda \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{N}\left[\lambda, \mathrm{~T}_{C}\left(\mathrm{t}_{\mathrm{C}}\right)\right]= & \text { spectral radiance of the calibration blackbody, } \\
& \mathrm{W}_{\mathrm{cm}}{ }^{-2} \mathrm{Sr}^{-1} \mathrm{H}_{\mathrm{H}}-1 \\
\tau_{\mathrm{d}}(\lambda)= & \text { spectral radiant transmittance of the window } \\
& \text { of the detector }
\end{aligned}
$$

${ }^{T}{ }_{f}(\lambda)=$ spectral radiant transmittance of the filter
$N\left[\lambda, T_{R}\left(t_{C}\right)\right]=$ spectral radiance of the reference blackbody,
$W \mathrm{~cm}^{-2} \mathrm{Sr}^{-1} \mathrm{H}^{-1}$
$T_{R}\left(t_{C}\right)=$ temperature of the reference blackbody at
calibration time $t_{c}{ }^{\circ} \mathrm{K}$
$T_{C}\left(t_{C}\right)=$ temperature of the calibration blackbody at
calibration time $t_{c},{ }^{\circ} \mathrm{K}$
$\varepsilon_{c}=$ radiant emissivity of the calibration blackbody
$\varepsilon_{R}=$ radiant emissivity of the reference blackbody
In Eq. (3) the value of $\pi A_{d} / 4 F_{c}^{2}$ is called the instru-
mental constant R_{C}.

For our pyrometer the following values have been adopted:

$$
\begin{aligned}
& A_{d}=(0.035 \mathrm{~cm})^{2} \\
& F_{C}=5.25 \\
& { }^{\varepsilon_{C}}=0.96 \pm 1 \% \\
& { }^{\varepsilon_{R}}=0.98 \pm 1 \%
\end{aligned}
$$

When measurements are carried out with the pyrometertelescope combination, Eq. (1) is still valid. The relationship between the infrared measurement, $d(t)$, and the lunar spectral radiance for an area at a temperature T and an assumed blackbody radiator is given by:

$$
\begin{equation*}
K(t) d(t)=\frac{\pi A_{d^{\rho} 0}^{2}}{4 F_{\text {eff }}^{2}} \bar{\tau}_{A}\left[T(\xi, n), m, \omega_{0}\right] S[T(\xi, n)] \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
\rho_{0}= & \text { radiant reflectance of the mirror (aluminized) of the } \\
& \text { telescope } \\
F_{e f f}= & \text { effective f-number of the optical system during } \\
& \text { measurements }
\end{aligned}
$$

$$
\begin{aligned}
\bar{\tau}_{\mathrm{A}}\left[\mathrm{~T}(\xi, \eta), \mathrm{m}, \omega_{0}\right]= & \text { mean atmospheric radiant transmittance } \\
\mathrm{T}(\xi, n)= & \text { brightness temperature, }{ }^{\circ} \mathrm{K} \\
\mathrm{~m}= & \text { air mass along the line of sight } \\
\omega_{0}= & \text { amount of precipitable water along the } \\
& \text { path, mm } \\
\mathrm{S}(\mathrm{~T})= & \text { blackbody radiance corrected for instru- } \\
& \text { mental transmittance, } \mathrm{W} \mathrm{~cm}^{-2} \mathrm{sr}^{-1}
\end{aligned}
$$

The radiance $S(T)$ is expressed by the following relationship

$$
\begin{equation*}
S(T)=\int_{0}^{\infty} N(\lambda, T) \tau_{0}(\lambda) d \lambda \tag{8}
\end{equation*}
$$

where $N(\lambda, T)$ is the spectral blackbody radiance, and the spectral instrumental transmittance $\tau_{0}(\lambda)$ is given by

$$
\begin{equation*}
\tau_{0}(\lambda)=\tau_{d}(\lambda) \tau_{f}(\lambda) \tag{9}
\end{equation*}
$$

In Eq. (7) the value of $\pi A_{d} \rho_{0}^{2} / 4 \mathrm{~F}_{\text {eff }}^{2}$ is called instrumental constant R_{M}.

For the 61-inch telescope at Agassiz Station the following values have been adopted

$$
\begin{aligned}
\rho_{0} & =0.98 *(\text { at } 10 \mu) \\
\mathrm{F}_{\mathrm{eff}} & =5.58
\end{aligned}
$$

The values of the amount of precipitable water ω are obtained from the data gathered by balloon sounding. For Agassiz Station we used the data from the U.S. Weather Bureau soundings at Albany (New York), Portland (Maine), and Nantucket

[^1](Massachusetts).* During observation the zenith distance z of the moon never exceeds 45°; this condition allows the use of the following relationship for the air mass m :
\[

$$
\begin{equation*}
m-m_{0} \sec z \tag{10}
\end{equation*}
$$

\]

where m_{0} is the unit air mass.
The equations for recuding the astrometric data from the photographic channel of our pyrometer are given in detail in a previous report (2).
*The values of ω_{0} are obtained by plotting atmospheric pressure versus dewpoint on a pseudo-adiabatic chart. Step integration and multiplication by the proper factors give the value of ω_{0} in millimeters.
A. Introduction

The integrated data-reduction package is designed to accommodate all calibration data, instrumental parameters, and astronomic data relevant to a given set of scans in one computer run, and to output a large accumulating file of lunar brightness temperatures.

The input data, the observational technique, and the datareduction approach have all been described in previous reports (1) (2). One major data-reduction algorithm has been added to those described in a previous report (2). The additional procedure is that required to convert infrared signal intensity to average brightness temperature of the resolution element. This procedure is embodied in LUNAR as a subroutine, as are all the specific calculations detailed in a previous report (2). The temperature-conversion routine TEMPR2 will be discussed in detail, but the other subroutines will only be outlined. Primary emphasis here is on the data-processing aspects of the integrated package, LUNAR.

B. DESCRIPTION OF LUNAR

LUNAR is written in FORTRAN II and FAP for operation under SAOFMS (Smithsonian Astrophysical Observatory Fortran Monitor System), whose relevant characteristics will be described.

1) Input Data Structure

Input data groups have been hierarchically ordered so that the most invariant tables and instrumental parameters can be precomputed and selected from a small set for insertion into the input deck as program parameter cards. These lowest-level data groups include ephemeris tables, coefficients of atmospheric transmittance, and the spectral blackbody radiance tables corrected for instrumental transmittance* given by:

[^2]\[

$$
\begin{equation*}
S(T)=\int_{0}^{\infty} N(\lambda, T) \tau_{0}(\lambda) d \lambda \tag{11}
\end{equation*}
$$

\]

where $N(\lambda, T)$ is the spectral blackbody radiance and $\tau_{0}(\lambda)$ the spectral instrumental transmittance. For example, the CORRADIANCE tables used in the temperature conversion routine TEMPR2 and the atmospheric model routine FAKIR are pre-computed by the program BRAD and inserted as a small card-group near the beginning of the data input to LUNAR. BRAD should be considered a partner to, but not a member of, the package LUNAR, since its job can be done once and for all for any instrumental transmittance.

The next highest level of input data is the set of parameters describing the operating settings of the radiation pyrometer as well as the signals introduced at the different stages of the electronics (see Fig. 2). These signals, bucking (n) and zero-suppression (N), are used to expand the dynamic range of the pyrometer and may occur in any scan in the sequence of scans to be processed. Such occurrences are signaled to LUNAR in an early card group. LUNAR stores the values of these scaling signals and proceeds to the next highest level of input data; i.e., periodic calibration traces which are output from the pyrometer while it is "looking" at a calibration blackbody. LUNAR reads these calibration traces all at once, stores them, and computes from them the constant $K(t)$ of the pyrometer over the time range of the scans to be processed in the current run (i.e., they are embodied in the coefficients of a Lagrange interpolation polynomial).

Finally, LUNAR reads the highest-level input data group: $y-x$ digital pairs representing infrared signal intensity versus time in digitizer counts. The x's are interspersed with periodic heading cards specifying the initiation of the x (or time) scale and with cards that distinguish the output data of the photographic channel from any given scan. This last card-group defines the lunar orthographic coordinates $(\bar{\xi}, \bar{n})$ of the points "seen" during the scan. These define, using MOON3 (the subroutine for lunar geometry*), the

[^3]location of the resolution element for each point along the scan. Note that only at the highest level are there data-groups requiring differing interdependent program interpretations. This approach allows us to dispense with elaborate and time-consuming data-edits and minimizes the number of passes through the data. The hierarchical ordering of data groups is reflected in the ordering of such groups in the input data-deck, which allows one-time calls to many of the component subroutines. This strategy allows for overlays of one-time tasks by subroutines which come into play when we begin processing the highest-level data. If the introduction of further functions of the state of the experimental configurations which vary rapidly in time should require more memory space, the ability to overlay program could easily provide extra storage.
2) Output Data Structure

Design of the output file was guided by two primary objectives: simplicity and maximum use of tape storage capacity. The need for simplicity was determined by the desired use of the file: to provide a thermal history covering one lunar month over large regions of the moon's surface. From this file, then, we must be able to retrieve isotherms $T(\xi, n, t)=T_{c}$ over a given time span $t_{0} \leq t \leq t_{n}$, where $t_{0}-t_{n}$ is a small interval in the scale of the lunar month. Or, we must retrieve from the complete file a timeseries in brightness temperature $T(\xi, \eta, t)$ for a given set of coordinates: ($\xi_{0},{ }_{0}$) , $\left(\xi_{1},{ }^{n} 1\right), \ldots,\left(\xi_{n}, \eta_{n}\right)$. It is envisaged that such displays could best be generated on digital-display equipment that has photographed cathode-ray-tube (CRT) output with several possible levels of grey, such as the Stromberg-Carlson Model 4020 (SC4020); or, better, on the next generation of display devices, such as the IBM 2280. In either case, economical retrieval calls for independent unit temperature-records that require no search for key-records or header-records to complete the data vector ($T, t, E,-$). In fact, each unit-record should be completely independent from all other output records and the file should contain only records of one type (i.e., essentially just [$T, t, \xi, n]$). A few additional data on the output points recorded are in fact retained: terrestrial topocentric location of the resolution element, selenocentric location of earth and sun, air mass, and an identifying scan number to
facilitate editing out "bad" scans. But nothing further from the data-reduction process is "remembered" in the final output file.

A full history of the data-reduction for a given run, including the input parameters used, is provided in the printed output as a double-check on the magnetic tape-recorded output. This will aid the investigator to locate "bad" scans--e.g., scans in which the constant $K(t)$ of the pyrometer was varying wildly and too rapidly. The printed output then provides all "post mortem"; the permanent multi-reel tape file contains only one kind of unit record that is sufficient to plot a point. Such simplicity of file-structure greatly facilitates the searches and sorts required to make the plots.

The need for maximum compression of output is dictated by the potential size of the file. Output in conventional FORTRAN II binary records (256 words per block) would give us an estimated 125 full reels of data. Therefore the output records are blocked: 133 logical records (15 words each of 36 bits) are stored per physical record or block. This number was chosen to comply with the most efficient sort available (viz. IBM 90 SORT operating under IBSYS), which requires blocks having a maximum length of 2000 computer words.* It is estimated that the large "blocking factor" (133) will reduce the required number of reels in the file to 26 .

One additional convention is adopted: that no physical record shall contain the data from more than one scan. This device enhances the speed and accuracy of editing at the cost of a minor increase (approximately 15\%) in storage required.
C. PROGRAMS

The main programs and subroutines are listed in Appendix B. The specific titles of the programs and subroutines are as follows:

[^4]
17) FRENCH -- Parabolic interpolation routine

The following subroutines from the SHARE Library of the Harvard Computing Center are used by FAKIR:

18)	ERR	-- Computes values of the error-function
19)	SIMEQ	-- Solves sets of simultaneous equations
20)	ICE 3	-- Variable stepsize integration routine
21)	ACOS	-- Computes arccosine
22)	ASIN	-- Computes arcsine
23)	ARTN	-- Computes arctangent
The	following are special	features of SAOFMS:
24)	REREAD	-- Re-scans the input buffer with a new format without physically moving tape
25)	WORDSF	-- Picks up free field input of alphabetia variables

D. DISCUSSION OF THE PROGRAMS

1) Main Program LUNAR

LUNAR assigns a time-coordinate to each data-point and, via calls to MOON3, assigns lunar orthographic coordinates (ξ, n) to each data-point. LUNAR is a data-handling program which interfaces the analog-to-digital conversion process with the computational routines (sections of MOON3 for geometry, FAKIR for atmospheric model, TEMPR2 for brightness-temperature computation). The specific data-handling procedures of LUNAR are as follows: converts time from digitized counts into total seconds (which combined with the date will give the time in U.T. and E.T.); corrects the
infrared measurements for any lateral drift of the paper during digitizing of the measurements; supervises the whole data-reduction package; and keeps count and supervises the permanent tape files of the output.
a) Input

A separate DATA DECK MAKEUP (see Appendix A) has been written. The input deck is divided into four classes, which are all punched in card form:

Constant Cards. These include the date, the ephemeris tables, caiibration constants, instrumental transmittance, CO_{2}, amount of precipitable water at zenith, O_{3} and CORRADIANCE tables.

Data Cards. These are of three kinds: 1) Heading card, which has two known times, given in hours, minutes, and seconds, with corresponding linear paper-chart coordinates, given in counts of an $x-y$ digital plotter. 2) Picture time-mark card, which has a time element measured in counts and the orthographic lunar coordinates $\bar{\xi}$ and $\bar{\eta}$ obtained from a match of the photograph with the Orthographic Lunar Atlas. 3) Amplitude infrared signal card, which contains five data points, each having one time element and one infrared measurement digitized from a paper-chart trace. In addition, each data card has the identifying scan number and each picture card has a frame number.

Control Cards and Switches. Control cards to distinguish a new scan, to end a run, etc., are provided and are described in detail in Appendix A. Some of them have zeros punched at different places to facilitate use of the free field format (G format of SAOFMS) on all the other data cards. G format does not recognize blank cards but distinguishes the zeros. A special switch called KEY is set up to facilitate the entering of subroutines MOON3, TEMPR2, and COEFI2 at different entry points.

Elaborate switching systems in the program are used to distinguish the many different input and control cards, all of which are
necessary in a large data-reduction package. They should be self evident in the program.
b) Sequence of Operations

Read in Date Card and Constant Cards. The date is read in by LUNAR and the constant cards by subroutines MOON 3 and TEMPR2, which are called by LUNAR.

Heading Card and Picture Time-Mark Card Processing. A scan usually has 4 or 5 heading cards, each of which is followed by one or two picture time-mark cards. It is also possible that no timemark is available during the time interval covered by a heading card. In this case, no picture time-mark card follows.

LUNAR reads in each heading card and the subsequent picture time-mark cards. Then the following actions take place:

1) Each heading card is indexed so that it can be referred to when the data cards are processed.
2) The time count of each picture time-mark card is converted into total seconds by linearly interpolating the times given by the heading card.
3) A call to subroutine MOON3 performs a series of coordinate transformations and computes the topocentric hour angle and declination of the center of the reticle for each photograph. MOON3 also indexes and stores this information.

Steps (1), (2) and (3) are repeated until the end of a scan.

SCAN/DRIFT Card Processing. This control card causes LUNAR to call subroutine MOON3 and to enter it at the third entry point (see statement 500, Appendix B--Program Listing). MOON3 will act in one of two ways, according to whether the card has the words SCAN or DRIFT on it. The analytical treatment of the two modes of
operation has been described previously (2). If the telescope remains stationary during the scan (DRIFT mode of operation), the program takes the mean hour angle and declination; if the telescope had a uniform motion in declination and hour angle (SCAN mode of operation), the program finds by the method of least squares the uniform motion in each coordinate that best fits the data. In either case, the hour angle and declination can then be interpolated for any specific time.

At this point LUNAR resets the index of the heading card to 1 and is ready to receive the data card.

Data Card Processing. Each data card has five data poincs plus the scan number. LUNAR checks the scan number first, then treats each data point as follows:

1) The time count of each picture time-mark card is converted into total seconds by linearly interpolating the times given by the appropriate heading card.
2) These data enter MOON3 through the fourth entry point (see statement 562, Appendix B--Program Listing). This subroutine computes the hour angle and declination for this specific time. The coordinate transformations are then repeated in reverse order to find the orthographic lunar coordinates. MOON3 returns to the main program these values plus a decision as to whether the current data point is on the lunar disk or not (ON/OFF decision).
3) LUNAR then calls subroutine COEFI2 which classifies each data point according to the ON/OFF decision just received and how far away (measured by the time element) the point is from the edge. Eventually, as shown in Figure 3, for one scan, those points on the lefthand side of the lunar disk form one group and those on the right form another. The average infrared measurement (\bar{y}_{ℓ}) in counts and the time this occurs $\left(\bar{t}_{\ell}\right)$ are calculated as follows:

For the left:

$$
\begin{equation*}
\bar{y}_{\ell}=\frac{1}{j} \sum_{i=1}^{j} y_{i} \tag{12}
\end{equation*}
$$

FIG. 3. Scheme showing the linear interpolation between the average infrared measurements \bar{Y}_{1} on the left of the lunar disk and the measurements \bar{y}_{r} on the right to obtain the sky level baseline $y_{b}(t)$ during a scan. This operation is performed by the subroutine COEFI2.
and

$$
\begin{equation*}
\bar{t}_{\ell}=\frac{1}{j} \sum_{i=1}^{j} t_{i} \frac{y_{i}}{\bar{y}_{\ell}} \tag{13}
\end{equation*}
$$

where j is the number of data points, y_{i} the infrared measurements and t_{i} the times when y_{i} was measured. Expressions similar to Eqs. (12) and (13) can be written for the points on the right of the lunar disk to yield \bar{y}_{r} and \bar{E}_{r}. A sky level baseline, $y_{b}(t)$, is then determined from the following linear relationship:

$$
\begin{equation*}
y_{b}(t)=\left[\left(\bar{y}_{r}-\bar{y}_{\ell}\right) /\left(\bar{t}_{r}-\bar{t}_{\ell}\right)\right]\left(t-\bar{t}_{\ell}\right) . \tag{14}
\end{equation*}
$$

These values, $y_{b}(t)$, are subtracted from the on-moon infrared measurements, y_{i}, to yield the net measurement $y(t)=y_{i}-y_{b}\left(t_{i}\right)$. This correction for each on-moon point will not take place until the end of each scan. There may be a great many of these points and each of them requires 15 words of storage. The IBM 7094 computer has 32,768 words of storage, and could spare only about 12,000 of them for this purpose. Hence, a temporary tape is needed to accommodate these points.
4) After COEFI2, the data of each data point, with an index number if it is on-moon, will be stored on a temporary tape. This index number tells which sky level is to be used as the base line.
5) After the above step, LUNAR processes the next data point taken either from the same card or from the next card, as the case may be.
6) Steps (1)-(5) are repeated until a control card is encountered, which immediately increments the index number of the heading cards. Then the whole sequence of operations is repeated until the end of a scan.
7) The scan number on a data card, together with a control card, signals the beginning of the next scan. The operation
returns to step (2) and processes new heading cards and picture time-mark cards and then repeats itself until all the scans of a run are finished.

Tape File Count. At the end of each scan LUNAR counts the number of physical records needed. Each record accommodates 133 data points of 15 words each.

A record on the permanent tape file may be half filled at the end of a scan. The next scan will always start with a new record. This will facilitate editing the file if it is needed in the future.

At the end, the total number of physical records needed for the run is calculated. Each tape will accommodate 1680 records. A message is printed out which gives the number of records left from the last run. This number should be on the date card of a run. From it the program will decide whether to fill up the original file or to start using a new file. A new tape is started by punching " 0 " on the date card, which means "no records left from last run, start with new tape."

First Pass Termination. The end of the first pass is signaled by a control card. Before turning control to TEMPR2 to perform the temperature conversion, the END card signals the program to:

1) Calculate the total number of physical records needed for the run, as mentioned above.
2) Call COEFI2 to finish up the last base line.
3) Determine whether or not there is still room on the original tape to accommodate the data of this run. If there is, LUNAR calls subroutine COPY, which transfers all the records to a new tape. Thus the original records on the tape will always be protected from accidental loss during writing. If there is no room on the original tape, COPY will be skipped.
4) Convert the time element of the last data card into hours, minutes, and seconds. The time is used to label each tape file if it is so desired later.

Conversion to Brightness Temperature. LUNAR turns over control to TEMPR2, which reads in the data points one by one from the temporary tape and, together with FAKIR and BREW, performs the conversion to brightness temperature.

Printed output and permanent tape filing are all done by TEMPR2 without going back to the main program LUNAR.
2) Subroutine MOON3

The MOON3 subroutine is a revision of MOON2 (3). It is rewritten as a subroutine to be an integrated part of the whole data reduction package. The changes concern mostly the switch functions and the sequence and format of the input and output, which are now transmitted internally rather than through card forms. MOON3 has four different entry points and the main program selects them appropriately with the aid of a switch (called KEY, Appendix B-Program Listing).
a) Input

When MOON3 is called the first time, it reads in the following information:

Place Card. This card gives the name of the observing site; the longitude in hours, minutes, and seconds; the latitude in degrees, minutes, and seconds; and the height in meters above sea level.

Refraction Card. Because of atmospheric dispersion, the photographic channel and the radiometric channel will be affected in different amounts by refraction. To allow for this difference, MOON3 reads in photographic and infrared detector effective wavelengths in that order; either angstroms or microns may be used.

The hour angles and declinations computed for the center of the reticle of the photographs will then be corrected for differential refraction between the two effective wavelengths (but not for the whole refraction at either wavelength). With panchromatic film and yellow filter the approximate effective wavelength is $6000 \AA$ and for the infrared detector and broad band filter* it is 10.7μ.

Radial Ephemeris (Table A). The semi-diameter and horizontal parallax are tabulated for every 0.5 day of E.T. Table A is limited to 50 entries.

Geocentric Angular Ephemeris (Table B). The apparent right ascension and declination are tabulated for every hour of E.T. Table B is limited to 500 entries.

Physical Ephemeris (Table C). The earth's selenocentric longitude and latitude, the sun's selenocentric colongitude and latitude, and the position angle of the lunar axis are tabulated for 0^{h} U.T.

In general, there should be at least two entries in each table both before and after all times of observation. MOON3 prints out all the above information for each run.
b) Sequence of Operations

Compute Hour Angle (h) and Declination (δ) of the Center of Reticle for Each Photograph. The picture time-mark cards of a scan are grouped together and read in by the main program LUNAR. At the second entry point (see statement 400, Appendix B--Program Listing), MOON 3 obtains from each picture time-mark card the time in total seconds, and the orthographic lunar coordinates $\bar{\xi}$ and $\bar{\eta}$ of the projected center of the reticle, which is the homologous point of the barycenter of the infrared detector. The U.T. and E.T., which are the arguments of several tables, are calculated as follows:

[^5]\[

$$
\begin{aligned}
& \text { U.T. }=\text { day }+t(\sec) / 86400, \\
& \text { E.T. }=\text { day }+[t(\sec)+35] / 86400
\end{aligned}
$$
\]

The remaining steps for obtaining the hour angle and declination of each photograph remain the same as previously described (2). Then the values of h and δ are converted into practical units (degrees instead of radians) and printed out. These values are also indexed and stored.

Correction due to the Motion of the Telescope. When MOON3 is called through the third entry point, it treats the h 's and δ 's of a scan according to one of the following three situations: the telescope was stationary; the telescope had a uniform motion in hour angle and declination; or it was uncertain whether the telescope moved or not. Detailed treatment of this problem has appeared previously (3).

MOON3 prints out the means of all the times, the h 's and $\delta^{\prime} s$ with the corresponding subsolar point and topocentric disk center.

The residuals of each h and δ are calculated. When the telescope was known or determined by the program to have been moving uniformly, any point with residuals of 10 arcsec or bigger from the computed mean value of the path of the scan is considered to be unreliable and is discarded. In the event that only one or two points remain, the reduction stops and the calculation is based on these one or two points. When a satisfactory set of residuals is obtained, the rms (root mean square) residual in position (both coordinates combined) is calculated and printed out, together with a graph of the residuals as a function of time.

The output of the orthographic coordinates obtained from the photographs of all scans in a run are placed together by MOON3.

Ephemeris Data for Each Observation at Time t. MOON3 receives the time (in seconds) and the infrared measurement of each data point at the fourth entry point. MOON3 calculates the ephemeris data and determines whether the infrared measurement is on or of
the lunar disk. All these are transmitted back to the main program LUNAR, which in turn calls subroutine COEFI2 to generate the correct base level for this scan and then stores all the results on a temporary tape. As mentioned before, the output of the ephemeris data is combined with the brightness temperature and printed out at the end of a run.

Process a New Scan. The last two steps are repeated for a new scan. MOON3 poses no limit to the number of scans that can be processed, except that they should all belong to the same date and should use the constants included in the tables read into MOON3.

3) Subroutine COEFI2

COEFI2 corrects the infrared measurement caused by the presence of the zero-suppression or bucking signal. The zerosuppression and bucking signals for each scan are read in by TEMPR2. It is understood that they are constant throughout a scan. COEFI2 selects the corresponding zero-suppression and bucking signal for each scan and corrects the infrared measurements accordingly. If no such information exists, the infrared measurement is left intact.

COEFI2 also generates a continuous sequence of linear fits to sky deflections so that they can serve as the base level that is subtracted from the moon deflection.
a) Input

COEFI2 is supervised by the main program LUNAR. COEFI2 is called after each data point has been processed by MOON3. Hence, two data are available for COEFI2. They come from LUNAR and MOON3 respectively, and are:

1) time in seconds (TSEC); and
2) whether the infrared measurement is on or off the lunar disk.

With this information, COEFI2 divides all the data points of a run into five categories. They are in time sequence and come to COEFI2 one by one. Figure 4 shows the sequence in the five categories.
b) Sequence of Operations

The sequence of operations is as follows:

1) Starting from point "a" COEFI2 stores time and infrared measurements for each point until it reaches point "b", the first on-moon point.
2) It then backtracks 3 seconds from "b" to "c" and discards the points in between because the infrared measurements of this region are now affected by lunar radiation. The mean value of the infrared measurements between "a" and " c " and the time when they occur are then calculated, indexed, and stored.
3) Information relating to each on-moon point between "b" and "d" is then stored on temporary tape. This tape contains the scan number, U.T., ephemeris, date, and the revised infrared measurement. COEFI2 also assigns each point an index number (KD) so that the corresponding base level will be subtracted from the infrared measurement.

Each on-moon data point generates 12 items of information. It is possible that several on-moon scans may be grouped together. If that is the case, more than 1500 data points will be accumulated and at least 18,000 words of storage will be needed. Therefore a temporary tape and a second pass are needed to accomplish the complete data reduction.
4) Continuing from "d", COEFI2 ignores the data between "d" and "e", which are 3 seconds apart, for the same reason given in step (2). From "e", time and infrared measurements are again stored until the next on-moon point "f" is reached.

Time, (t)

FIG. 4. Scheme showing the linear interpolation to obtain the sky level base line $y_{b}(t)$ for a series of scans.
5) COEFI2 backtracks again 3 seconds to point "g". The mean value of the infrared measurements between "e" and " g " and the time they occur are again calculated, indexed, and stored. These data, with the information from step (2), completely determine the first base level.

From point "f" the program repeats itself from step (3) and treats point "f" as point "b". Thus the terminal point of the first base level becomes the starting point of the second. COEFI2 then completes the last base level with the signal of the last card of the run.

If for any reason it is necessary to repeat the run of some particular scan and the brightness temperatures calculated do not come out exactly as before, the discrepancies may be due to the fact that the scan was previously run together with the adjacent scans. The base level was previously dependent on all the off-limb points between them, but in the repeat run is dependent on the points of this particular scan alone. In practice, however, the difference is usually very small and will not show up since the result in degrees Kelvin is accurate within 4 significant figures.
4) Subroutine TEMPR2

To find the brightness temperature of a given data point, the main reduction program solves the following non-linear integral equation:

$$
\begin{equation*}
K(t) y(t)=\overline{R \tau}_{A}\left[T(\xi, \eta), m, \omega_{0}\right] S[T(\xi, \eta)], \tag{15}
\end{equation*}
$$

where $Y(t)$ is the infrared measurement at a point with coordinates (ξ, η); $K(t)$ is the constant of the pyrometer obtained as described under GAIN and LAGR, R is an instrumental constant described in GAIN, $\bar{\tau}_{A}\left[T(\xi, \eta), m_{1} \omega_{0}\right]$ as computed in FAKIR and $S[T(\xi, \eta)]$ as computed in BRAD. Since these variables are bounded and tabulated, this problem is solved to adequate accuracy by inverse linear interpolation (Regula Falsi method). Note here that TEMPR2 fills out by linear interpolation the $\bar{\tau}_{A}$ table in $A(T), B(T), C(T)-$-the
parameters of the atmospheric model computed by FAKIR--to the full $85^{\circ} \mathrm{K}$ to $410^{\circ} \mathrm{K}$ range in increments of $1^{\circ} \mathrm{K}$ compatible with tables in the CORRADIANCE, $S(T)$.

To put it more generally, we are to find the zero of a tabular function, $F(T)$, where:

$$
\begin{equation*}
F(T)=\frac{K \cdot Y}{R \bar{\tau}_{A}\left(T, m, \omega_{0}\right)}-S(T) \tag{16}
\end{equation*}
$$

(Note that the T here is really the average brightness temperature of the lunar region covered by the resolution element.) Both the integral, $S(T)$, and the mean atmospheric radiant transmittance, \bar{T}_{A}, are known to be monotonic in T. This consideration might argue for a Newton-Raphson approach. However, in view of the lack of analytical expressions for the derivative of $F(T)$, the work proceeds more efficiently with the Regula Falsi method. This is especially true since within any one scan we can take the final root, T, for the preceding time point and make it the starting root for the next. At the beginning of the scan, $F(T)$ is tabulated and the T 's on either side of a sign change are selected as starting points, T_{0} and T_{1} :

$$
\begin{gather*}
\text { Step } A: T^{\prime}=\left[F\left(T_{1}\right) T_{0}-F\left(T_{0}\right) T_{1}\right] /\left[F\left(T_{1}\right)-F\left(T_{0}\right)\right] \tag{17}\\
\text { Step } B: T^{\prime} \rightarrow T_{0} \text { if } F\left(T^{\prime}\right)<0 \tag{18}\\
T^{\prime} \rightarrow T_{1} \text { if } F\left(T^{\prime}\right)>0 \tag{19}
\end{gather*}
$$

Step C: Return to step A until $\left|T_{0}-T_{1}\right| \leq \Delta T(T)$,
where $\Delta T(T)$ is the temperature resolution determined by the noise level of the pyrometer. Actually, in the present case, one iteration is quite sufficient.
a) Input

TEMPR2 reads bucking and zero-suppression signal. These are held in COMMON for use by COEFI2. The principal inputs to TEMPR2 are the current CORRADIANCE tables, $S(T)$ (which are read from constant cards selected for the instrumental transmittance that is applicable to the scans currently being processed); current infrared measurement, $y(t)$ (corrected for base level and bucking and zero-suppression signals) ; and $K(t)$ (the constant of the pyrometer). In addition, the mean atmospheric radiant transmittance is obtained through communication with subroutine FAKIR (refer to Fig. 1).
b) Sequence of Operations

One segment of TEMPR2 is used to read the constant cards under supervision by LUNAR. TEMPR2 then executes calls to FAKIR and GAIN, to obtain the mean atmospheric radiant transmittance values for the entire time interval covered by the scans in the current run and to obtain a polynomial form for the constant of the pyrometer in the same time interval. Finally, TEMPR2 executes the entire second pass through all the data points, subtracting the base level corrections computed by COEFI2 and adding brightness temperature to the data vector describing each point.

5) Subroutine FAKIR

This subroutine computes the mean atmospheric radiant transmittance $\bar{\tau}_{A}\left(m_{j}, T_{i}\right)$. A set of temperatures, T_{i}, covering the lunar temperature range $\left(85^{\circ} \mathrm{K}\right.$ to $\left.410^{\circ} \mathrm{K}\right)$ is selected, and for each T_{i} a small set of air mass values, m_{j} (which cover the range $m=1.0-4.0$), is selected. The mean transmittance is calculated:

$$
\begin{equation*}
\bar{\tau}_{A}\left(m_{j}, T_{i}\right)=\frac{\int_{0}^{\infty} N\left(\lambda, T_{i}\right) \tau_{0}(\lambda) \tau_{A}\left(m_{j}, \lambda\right) d \lambda}{\int_{0}^{\infty} N\left(\lambda, T_{i}\right) \tau_{0}(\lambda) d \lambda} \tag{20}
\end{equation*}
$$

where $N\left(\lambda, T_{i}\right)$ is the spectral blackbody radiance, $T_{0}(\lambda)$ the
spectral instrumental transmittance, and $\tau_{A}\left(m_{j}, \lambda\right)$ the spectral atmospheric radiant transmittance computed according to one of the atmospheric models previously described (2).

The denominator in Eq. (20) is selected from the CORRADIANCE tables pre-computed by BRAD and the numerator is evaluated by use of subroutine ICE3. Note that it is not feasible to pre-compute the numerator, since the $\tau_{A}\left(m_{j}, \lambda\right)$ computed by BREW is dependent on the amount of precipitable water along the path, w, which covers a wide range. Also, peculiarities in the atmospheric conditions over some time may require the selection of differing models. Thus $\tau_{A}\left(m_{j}, \lambda\right)$ is really $\tau_{A}(m, \lambda, w$, model $)$. After the $\bar{\tau}_{A}$ has been computed for each of the m_{j}, a least-squares fit of $\bar{\tau}_{A}$ is made to the analytic form:

$$
\begin{equation*}
\bar{\tau}_{A}\left(m_{j}, T_{i}\right)=\exp \left(-c m^{p}\right), \tag{21}
\end{equation*}
$$

where $p=A \log _{10} m+B$.
This process is repeated for all of the T_{i} and the result is a $\bar{\tau}_{A}$ analytic in m with coefficients tabular in T :

$$
\begin{equation*}
\bar{\tau}_{A}\left(m_{j}, T_{i}\right)=\exp \left[-C\left(T_{i}\right) m^{p\left(T_{i}\right)}\right] \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
p\left(T_{i}\right)=A\left(T_{i}\right) \log _{10} m+B\left(T_{i}\right) \tag{23}
\end{equation*}
$$

To find $\bar{\tau}_{A}\left(m, T_{x}\right)$ where $T_{i}<T_{x}<T_{j}$, simple linear interpolation in the tables of $\left[A\left(T_{i}\right), B\left(T_{i}\right), C\left(T_{i}\right)\right]$ is adequate, since $\bar{\tau}_{A}$ is a slowly changing function of T.
6) Subroutine BREW

This subroutine used by FAKIR calculates a spectral atmospheric radiant transmittance $\tau_{A}(m, \lambda)$, according to one of three possible analytic models previously described (2). ${ }^{\top} A$ also depends
on the amount of precipitable water, ω_{0}, at the zenith. The technique used by BREW has been described previously (2).
7) Subroutine GAIN

This subroutine computes the constants of the pyrometer $K\left(t_{c}\right)$. Periodically interspersed with lunar scans are calibration passes in which the infrared detector is "looking at" a calibration blackbody at temperature T_{C} with an enclosure reference blackbody at temperature T_{R}. Let $Y\left(t_{c}\right)$ be the amplitude in digitizer counts of the calibration infrared signal. Now we can calculate a pyrometer constant (i.e., calibration or scaling constant) from:

$$
\begin{equation*}
K\left(t_{c}\right) Y\left(t_{c}\right)=R_{C}\left\{S\left[T_{C}\left(t_{c}\right)\right]-S\left[T_{R}\left(t_{c}\right)\right]\right\} \tag{24}
\end{equation*}
$$

where the t_{c} are times of calibration passes, R is an instrumental constant, and S is CORRADIANCE as obtained by linear interpolation in our BRAD-created tables. If our times of calibration, t_{c}, span the time region covered by the scans to be processed, we have in the values $K\left(t_{c}\right)$ a discrete table of pyrometer constants as a function of time.
8) Subroutine GT (mnemonic LAGR)

The LAGR subroutine performs Lagrange-interpolation in the table $K\left(t_{c}\right)$ to obtain $K(t)$ at any time of a data-point. Thus, depending on the number of calibration times, $t_{c}(c=1,2, \ldots, n)$, a polynomial of arbitrarily high degree (n) is available to describe the drift of the pyrometer constant:

$$
\begin{equation*}
K(t)=\sum_{c=1}^{n}\left\{K\left(t_{c}\right) \prod_{\substack{j=1 \\ \neq c}}^{n} \frac{\left(t-t_{j}\right)}{\left(t_{c}-t_{j}\right)}\right\} \tag{25}
\end{equation*}
$$

This information is called for at each data point from the temperatureconversion program TEMPR2.

9) Subroutine BRAD

The program BRAD is not incorporated in LUNAR, but performs a set of computations which are pre-tabulated before a run of the LUNAR package. A selected BRAD output set is submitted with each run of LUNAR. BRAD produces tables of blackbody radiances, corrected for proper instrumental transmittance (CORRADIANCE), as a function of temperature, T. The spectral instrumental transmittance, $\tau_{0}(\lambda)$ is input to BRAD. ${ }^{\tau} 0(\lambda)$ may be tabulated in any given interval, $\Delta \lambda$, over any range of λ (here we are concerned specifically with the $8.0-15.0$ micron "window"). BRAD evaluates the integral:

$$
\begin{equation*}
S(T)=\int_{0}^{\infty} N(\lambda, T) \tau_{0}(\lambda) d \lambda \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
N(\lambda, T)=\frac{c_{1}}{\lambda^{5}\left[\exp \left(c_{2} / \lambda T\right)-1\right]} \tag{27}
\end{equation*}
$$

and

$$
\begin{aligned}
& c_{1}=c^{2} h \\
& c_{2}=c h / k
\end{aligned}
$$

where c is the velocity of light in vacuum, h is the Pl anck constant, and k is Boltzmann's constant.

For a given spectral instrumental transmittance, $\tau_{0}(\lambda)$, a table of CORRADIANCES, $S(T)$, is output for the temperature range $85^{\circ} \mathrm{K}$ to $410^{\circ} \mathrm{K}$. To evaluate the integral, BRAD uses ICE3, a variable stepsize integration routine employing a modified Adams-Moulton method with error control (via stepsize halving to estimate error). Interpolation in the table, $\tau_{0}(\lambda)$ is provided by a parabolic interpolation routine, FRENCH. The tabular interval $\triangle T=1^{\circ} \mathrm{K}$ is quite adequate since the CORRADIANCES, $S(T)$, are clearly quite well-behaved and monotonic.
IV. COMPUTER OUTPUT

The Table shows a typical output of the data processed by the computer program discussed in this report. Column 1 gives the scan number arbitrarily assigned to each scan. Column 2 gives the data point number in sequence. Columns $3,4,5$, and 6 give the date expressed in days, hours, minutes, and seconds at which the respective data point has been obtained. Columns 7 and 8 give the orthographic coordinates of each data point. Column 9 gives the air mass through which the point of given coordinates has been measured. Columns 11, 12, 13, and 14 give the elevation of the sun and earth at the given orthographic coordinates, earth azimuth from the sun, phase angle, and brightness temperature. The print out "off" at the bottom of the Table means "off the lunar disk". Thus, this output gives not only the brightness temperature but also other relevant astronomical data for further interpretation of the brightness temperature data.

COMPUTER OUTPUT OF THE DATA PROCESSING OF LUNAR INFRARED
 MEASUREMENTS AT HIGH SPATIAL AND RADIOMETRIC RESOLUTION TO OBTAIN BRIGHTNESS TEMPERATURE AND OTHER RELEVANT ASTROMETRIC DATA

EPHEMERIS ANO TEMPERATURE DATA OF LUNAR SURFACE
SCAN

SCAN	DATA	196		PR				AIR	elevati	ON OF	EARTH ALH.	Phase		temperature
NO.	No.	D	H	M	SEC	$\times 1$	ETA	MASS	EARTH	SUN	FROM SUN	ANGLE		degree K
1	560	15	1	7	41.60	-0.8281	-0.3512	2.057	22.6	11.5	0.3	11.2		295.02
1	561	15	1	7	41.80	-0.8315	-C.3495	2.657	22.3	11.1	0.3	11.2		293.03
1	562	15	1	7	42.01	-0.8350	-C.3477	2. 657	21.9	10.8	0.3	11.2		289.99
1	563	15	1	7	42.21	-0.8384	-0.3460	2.057	21.6	10.4	0.3	11.2		286.84
1	564	15	1	7	42.41	-0.8419	-0.3442	2.057	21.2	10.0	0.4	11.2		286.84
1	565	15	1	7	42.57	-0.8445	-0.3429	2.057	20.9	9.8	0.4	11.1		285.76
1	566	15	1	7	42.82	-0.8487	-0.3407	2.057	20.5	9.3	0.4	11.1		283.58
1	567	15	1	7	43.08	-0.8531	-C. 3384	2.057	20.0	8.8	0.5	11.1		283. 58
1	568	15	1	7	43.18	-0.8548	-0.3375	2.057	19.8	8.6	0.5	11.1		283.58
1	569	15	1	7	43.39	-0.8584	-0.3357	2.057	19.4	8.2	0.5	11.1		282.47
1	570	15	1	7	43.59	-0.8615	-0.3338	2.057	is.ou	7.8	0.5	1:.1		280.21
1	571	15	1	7	43.85	-0.8664	-0.3315	2.057	18.4	7.3	0.5	11.1		279.06
1	572	15	1	7	44.00	-0.8691	-0.3301	2.657	18.1	7.0	0.6	11.1		276.72
1	573	15	1	7	44.20	-0.8725	-c. 3283	2.057	17.7	6.6	0.6	11.1		275.53
1	574	15	1	7	44.41	-0.8761	-0.3263	2.057	17.2	6.1	0.6	11.1		271.85
1	575	15	1	7	44.61	-0.8798	-0.3244	2. 557	16.8	5.6	0.6	11.1		270.59
1	576	15	1	7	44.82	-0.8834	-0.3224	2.057	16.3	5.2	0.7	11.1		268.00
1	577	15	1	7	45.02	-0.8871	-0.3204	2.057	15.8	4.7	0.7	11.1		265.34
1	578	15	1	7	45.23	-0.8909	-0.3184	2.057	15.3	4.2	0.7	11.1		266.67
1	579	15	1	7	45.43	-0.8946	-0.3163	2. 057	14.7	3.6	0.7	11.1		263.96
1	580	15	1	7	45.63	-0.8992	-0.3143	2. 057	14.2	3.1	0.8	11.1		263.96
1	581	15	,	7	45.84	-0.9021	-0.3122	2.057	13.6	2.5	0.8	11.1		259.71
1	582	15	1	7	46.04	-0.9060	-0.3100	2.057	13.0	1.9	0.8	11.1		255.21
1	583	15	1	7	46.25	-0.9099	-0.3078	2.057	12.4	1.3	0.8	11.1		250.41
1	584	15	1	7	46.45	-0.9139	-0.3055	2.057	11.8	0.6	0.8	11.1		247.02
1	585	15	1	7	46.66	-0.918C	-0.3032	2.057	11.0	-0.1	0.9	11.1		245.26
1	586	15	1	7	46.81	-0.9211	-0.3014	2.157	10.5	-0.6	0.9	11.1		239.68
1	587	15	1	7	47.07	-0.9261	-0.2984	2.057	9.5	-1.6	0.9	11.1		235.67
1	588	15	1	7	47.22	-0.9294	-0.2964	2. 057	8.9	-2.2	0.9	11.1		235.67
1	589	15	1	7	47.42	-0.9339	-C. 2936	2.C57	7.9	-3.2	1.0	11.1		224.28
1	590	15	1	7	47.63	-0.9387	-0.2907	2.157	6.8	-4.3	1.0	11.1		224.27
,	591	15	1	7	47.83	-0.9438	-0.2873	2.057	5.5	-5.6	1.0	11.1		216.10
1	592	15	1	7	48.04	-0.949t	-0.2833	2.057	3.8	-7.3	1.0	11.1		216.09
1	593	15		7	48.24	-0.9528	-0.2822	2.057	0.	0.	0.	0.	OFF	-0.
1	594	15	,	7	48.45	-0.955t	-0.2810	2. 057	0.	0.	0.	0.	OFF	-0.
1	595	15		7	48.65	-0.9585	-0.2798	2.057	0.	0.	0.	0.	OFF	-0.
1	596	15	1	7	48.85	-0.9614	-0.2785	2.057	0.	0.	0.	0.	OFF	-0.
1	597	15	1	7	49.06	-0.9643	-0.2773	2.057	0.	0.	0 .	0.	OFF	-0.
I	598	15	1	7	49.21	-0.9664	-0.2764	2.057	0.	0.	0.	0.	OFF	-0.
1	599	15	1	7	49.42	-0.9693	-0.2752	2.057	0.	0.	0.	0.	OFF	-0.
	600	15	1	7	49.62	-0.9722	-0.2739	2.057	0.	0.	0.	0.	OFF	-0.
1	601	15	1	7	49.83	-0.975	-0.2728	2.057	0.	0.	0.	0.	OFF	-0.
1	602	15	1	7	50.03	-0.9779	-0.2715	2.057	0.	0.	0.	0.	OFF	-0.
1	603	15	1	7	50.23	-0.9807	-0.2703	2.057	0.	0.	0.	0.	OFF	-0.
1	604	15	1	7	50.44	-0.9836	-0.2691	2.057	0.	0.	0.	0.	OFF	-0.
1	605	15	1	7	50.64	-0.9865	-0.2679	2.057	0.	0.	0.	0.	OFF	-0.
1	606	15	i	7	50.85	-0.9894	-c. 2666	2.057	0.	0.	0.	0.	OFF	-0.
1	607	15	1	7	51.05	-0.9922	-0.2655	2.057	0.	0.	0.	0.	OFF	-0.
1	608	15	1	7	51.26	-0.9951	-0.2642	2.657	0.	0.	0.	0.	OfF	-0.
1	609	15	1	7	51.46	-0.9979	-0.2630	2.657	0.	0.	0.	0.	DFF	-0.
1	610	15	1	7	51.67	-1.0008	-0.2618	2.057	0.	0.	0.	0.	OFF	-0.
,	611	15	1	7	51.87	-1.0037	-0.2605	2.057	0.	0.	0.	0.	OFF	-0.
,	612	15	1	7	52.07	-1.0066	-0.2593	2.057	0.	0.	0.	0.	DFF	-0.
	613	15	1	7	52.23	-1.0088	-0.2584	2.057	0.	0.	0.	0.	OFF	-0.
1	614	15		7	52.48	-1.0123	-C. 2569	2.057	0.	0.	0.	0.	OFF	-0.
1	615	15		7	52.69	-1.0151	-0.2557	2.057	0.	0.	0.	0.	DFF	-0.

APPENDIX A
 SAMPLE DECK MAKE UP

1. DATE CARD--Besides year, month, and day, this card also gives the number of physical records remaining on the tape from the last run. Punch "0" after "date" to start a new tape.

Example:

```
Column 1 4 6
    1965 APRIL 15 0
    \dagger
    one blank in between
```


2. EPHEMERIS CARDS

Ephemeris cards are of five types. They are normally read in the order given below; also, there is a blank card to terminate this group.
a) PLACE card (Observer's coordinates)

This has PLACE in columns 1-5, the name of the place in cols. 7-18 followed by the longitude (+ West, - East) in hours, minutes, and seconds; the latitude in degrees, minutes, and seconds; and the height in meters above sea level. The format is similar to that for the list of Observatories in the Ephemeris.
b) REFRACTION card

This card has REFRACTION beginning in column 1 , followed by the photographic and detector effective wave lengths in that order; either angstroms or microns can be used as units. The hour angles and declinations of the resolution element obtained from the photographs will then be corrected for differential refraction between the two wavelengths (but not for the whole refraction at either wavelength). If the refraction card is omitted, no correction will be made.

Approximate effective wavelengths are:

Photographic Channel

panchromatic film, no filter: $5000 \AA$
panchromatic film, yellow filter: $6000 \AA$
panchromatic film, red filter: $6200 \AA$

Visual Channel
5500 A

Radiometric Channel with the Addition of Broadband Filter
10.7μ
c) TABLEA card (Radial Ephemeris)

This has TABLEA in columns $1-6$, followed by the year, month, and day; and the lunar semidiameter and horizontal parallax. The month should be separated from the year by a single blank. The day ends with . 0 or . 5 , just as in the Ephemeris. This table is limited to a maximum of 50 entries.
d) TABLEB card (Angular Ephemeris)

This has TABLEB in the first 6 columns; the year, month, and day as above; the hour of the day; the R.A. and declination of the Moon as given in the Ephemeris. This table is limited to a maximum of 500 entries.
e) TABLEC card (Physical Ephemeris)

This has TABLEC in columns 1-6; year, month, and day as before; the Earth's selenocentric longitude and latitude; the Sun's selenocentric colongitude and latitude; and position angle of the Moon's axis. This table is limited to a maximum of 25 entries.

In general, there should be at least two entries in each table both before and after all times of observation.
3. CONSTANT CARDS FOR TEMPERATURE REDUCTION
a) Constant of the bucking-signal counter cards

These constant cards are expressed in watts per bucking signal count; it is inherently positive. This constant appears alone on the card in columns 11-22, and should be rightjustified (i.e., leading blanks are acceptable, but blanks trailing into column 22 are not).

Example:

This is E-format, where the last three characters must be a sign for the exponent and a two-character exponent--the + sign in column 12 is optional. The above represents the quantity 1.206×10^{-10}. If no bucking signal is to be used for a run, nevertheless one blank card must replace this card.
b) Scan-Bucking signal cards

These are one or more cards specifying alternately a scan number and one associated bucking signal. One card accommodates seven such pairs. The first and succeeding cards of this group must contain the letters BUC in columns 1-3, and the last card of the group must be totally blank. If there is no bucking signal among all the scans, then only the blank card is needed to represent this group.

Example:
Column

The above lists three scans in the present run in which bucking signals were present. The three-place integer field specifies the scan number and is followed by a five-place decimal field which expresses in units of the bucking-signal counter the additive bucking voltage which was present throughout that scan. The sign of the bucking signal is determined as follows: if it has increased the height of the deflection trace, then the sign is positive; if the presence of the bucking signal has made the y-deflection trace smaller by a constant (i.e., smaller than it would have been in the absence of a bucking signal), then the sign is negative. If three digits of non-fractional significance are desired in the bucking counts, any fraction of a count must be dropped, and the decimal point occupies the last position in the field (as with the entry for $\operatorname{scan} 100$ in the above example). For sake of internal efficiency, if more than one BUC card will be needed to list all scans with bucking signals and their associated bucking counts, the first BUC card should be filled with all the seven pairs it will accommodate. No more than twenty scans with bucking signals should be run at once. Each scan with a bucking signal must have an entry for it in a BUC card even though the same signal may persist through several contiguous scans.
c) Scan-Zero suppression cards (see Fig. 1)

The same conventions and formats apply here as to the scanbucking signal cards in group b), with the following exceptions:
(1) The first three columns of the card must contain the characters ZER (followed by three blanks as above).
(2) Zero suppression counts are entered in units of digitized deflection counts (four counts per millimeter of deflection).

Again, a blank card must always be present in this group, even if a set of $Z E R$ cards is not needed and is not present. Thus, in a run of scans in which bucking signal and zero-suppression are not relevant, the data deck would begin with three blank cards--one for each of the three data groups so far described.
d) Convolution of the blackbody radiance and instrumental transmittance table cards

This group will already have been prepared. Three such groups are currently available:
one for the wide-band filter plus window;
one for the narrow-band filter plus window;
one for the rectangular filter plus window.
Each set comprises 54 cards. If any filter other than those listed above is used, a new group of table cards must be prepared in advance.
e) FAKIR control cards

Card 1 gives the amount of precipitable water in millimeters, for one air mass measured during the lunar observations; the amount of precipitable water used for the atmospheric model (this amount, 3.0 millimeters, has been derived from the data collected by Gates and Harrop, but if the experimental data input to the FAKIR program should change, the quantity should be changed accordingly); and a name, LIN, for the order of interpolation to be used in the experimental data. Five columns of this card are allotted to each of the above control quantities, beginning in column l, except for the last name, LIN, which occupies only three columns.

Example:

[^6]As opposed to numerics, the names must be left-justified in their allotted fields.

Card 2 specifies three quantities that control treatment of continuous absorption by FAKIR: the first control is one letter--either an H or an $A-$ which specifies whether or not continuous absorption is to be due to $\mathrm{H}_{2} \mathrm{O}(\mathrm{H}$ stands for $\mathrm{H}_{2} \mathrm{O}$ and 3.0 millimeters has been selected as the amount of precipitable water as the source of continuous absorption and should always be used with the current experimental data). The next control is the coefficient of continuous absorption for the choice made in the first control. For $\mathrm{H}_{2} \mathrm{O}$ as the cause of continuous absorption, this coefficient should be 0.01075 ; it should be 0.06 if $\mathrm{H}_{2} \mathrm{O}$ is not the cause. The third control has two alternatives: either blank cards or the word NOT in the last three columns of the card. If NOT is used, continuous absorption will be ignored. Generally do not ignore it (i.e., do not put NOT).

Example:

This, in fact, is the card that should generally be used; but the choice may be subject to reconsideration for scans that took place during times when the amounts of precipitable water were exceedingly low.

Card group 3 contains the experimental data which supply the coefficients for the various small-step models (2). These cards have already been prepared and should simply be inserted as a group at this point. (Always check to be sure that the last of these cards has a 1 in column 80 to signal the end of this group.)

Card group 4 - Instrumental transmittance. This is the tabular form of the spectral transmittance of the filter and window mentioned in Chapter 4. Again, this is a pregenerated group of cards which should match the radiance table (above) in its identification; at present, this includes only wide-band, narrow-band, and rectangular.

Card group 5 - Temperature list. This list specifies a convenient set of temperatures within the working range at which FAKIR will compute the tabular coefficients of $\bar{\tau}_{A}$. All other values of the coefficients in steps of $1^{\circ} \mathrm{K}$ are then picked up by linear interpolation in the set of "exact" values at the temperatures in the present list.

The present pre-generated cards for this list are adequate, but if a change is ever desired, punch ten temperatures per card separated by blanks--free field-using as many cards as desired, and end the list with a negative temperature.

Card 6 - Extrapolation card (for BREW). This card selects an extrapolation between the experimental data and the CO_{2} theoretical data. Six fields are present on this card. The first is a ten-column field starting in column 21 which specifies the beginning of the IR-region (expressed in microns) in which an extrapolation will be made from preceding data; this field is in decimals. The next field is alphabetic and either contains the word EQUAL in columns 31-35 or is left blank. If the word EQUAL does appear, the extrapolation will be made to the wavelength at which the amount of CO_{2} absorption becomes comparable with that attributed to $\mathrm{H}_{2} \mathrm{O}$ in the region from which the extrapolation is made, or to the upper limit on the region in which extrapolation is made (this is entered in the next field). If EQUAL does not appear, extrapolation will be made to the upper limit punched in the next field, which is again decimal and occupies card columns 41-50. Here is entered the upper limit of the IR-region in which extrapolation is necessary (because
of lack of experimental data). The next field occupies card columns 5l-60 (always inclusive) and gives in microns the lower limit of the IR-region from which the extrapolation is to be made. The fifth field occupies columns 61-70 and gives the upper limit of the IR-region from which the mean is extrapolated. The final field, columns 79 and 80 , contains either the word NO or blanks. If the word NO is present, no extrapolation is performed.

Example:
Column

Here an extrapolation is made in the range 12.543 to 14.100 microns or to the wavelength at which the amount of CO_{2} is comparable with that of $\mathrm{H}_{2} \mathrm{O}$; the extrapolation is made from the available data in the IR-range 12.0 to 12.5 microns. This card is pre-generated and all data are right justified.
f) Calibration Constant $K(t)$ cards

These cards contain a table of the calibration constant, $K(t)$, as a function of universal time. Values of $K(t)$ are expressed in units of watts per millimeter of the deflection trace. Values for the whole time range covered by the scan are batched together in one run: specifically, a value for the calibration constant for a time earlier than the earliest time a data-point was recorded in the first scan, and a value at a time later than the latest data-point in the last scan should be entered, along with their associated times according to the format specified. Handling discontinuous changes in $K(t)$ may be ignored as long as the bucking-signal and zero-suppression remain the only means by which the output level of the deflection trace can be changed by discrete amounts. However, the CHANGE card containing the time greater than any of the data-point times embodied in the scans must be present.

Format

Format		Entry	
A6 Columns			
I3		Card Type	$1-6$
I3		Day	$7-9$
I3	Hour	Minutes	$10-12$
F6.2	Seconds	$16-15$	
E10.4	K(t)	$22-31$	

Card Type
(1) The first card cannot be a CHANGE card and will have blanks in columns l-6.
(2) On every card representing data recorded at the time of a discrete change of the gain setting, the word CHANGE should be entered in columns 1-6.
(3) After the last data card in the deck, a card with only the word FINALI in columns $1-6$ should be included.
(4) The card immediately preceding a FINALI card must be a CHANGE card with a time greater than any preceding time.

Example:

4. SCAN CARDS

There are six different card types under this group. They are:
a) Heading cards
b) Picture cards
c) SCAN or DRIFT cards
d) Data cards
e) 000 cards
f) Scan ending cards

They are arranged as follows:
a) Heading Card: This card is generated by the digitizer and contains the deflection and time (hour, minute, and second) counts at the beginning and the end of each scan.

Format (free field format of 150):

No. of Field

b) Picture Cards: One or more picture cards relating to the same scan as the heading card are grouped together. The orthographic lunar coordinates XI and ETA and the identifying picture frame number are all punched on these cards. Free field format of 8 G is used:

A scan usually has more than one heading card; a) and b) are then repeated from here for the whole scan.
*990 distinguishes these cards from the data cards.
c) SCAN or DRIFT Card: This card has a 0 (zero) punched in column 2. The rest of the card may be blank or may contain an indication of the scanning mode, beginning in or after column 7; the mode is indicated by the word SCAN if the telescope is moving during the scan, or the word DRIFT if a drift curve is taken with the telescope fixed.
d) DATA Cards: All the data cards of a given scan are grouped together but subgroups are subdivided by 000 cards.
e) 000 Card: A card with 000 punched at columns l-3 separates each sub-group of data cards that are under different heading cards. (Hence, the number of 000 cards of a scan is always one less than the number of heading cards.)
f) Scan Ending Card: This card has 0 (zero) punched in columns $2,4,6$, and 8. It signals the end of one scan and the beginning of the next scan. It may be omitted if only one scan is being processed.

NEXT SCAN: At this point the SCAN CARDS of Section 4 may be repeated for the next scan. The number of scans that can be processed in a run should all be under the same DATE CARD and the constant cards of Sections 2 and 3. However, the number of scans that can be processed using bucking signal and zero suppression is limited to twenty.
5. END OF RUN CARD

This card has 0 (zero) punched in column 2 and the word FIN on columns 4, 5, and 6. It immediately precedes the END OF FILE card.

```
                    APPENDIX B
PROGRAM LISTING
* LIST8
* LARFL
* symRol tarlf
CMAIN PROGRAM LUNAR TO COMPUTE TEMPERATURE DISTRIBUTION ON MOONS SURFACE
C LUNAR GUPERVISEG GIIRROUTINES MOON3,COEFI2 AND TEMPR2
    COMMON BUICK,ZERO,RSCON,NSB,NSZ,YII,UI,C,CT,TI,GN,NK,ALAMB,ELEMNT,
    1C1,CZ,C3,PLAN,WH2O,CAUSE,COEF,AVOIDC,IMAX,PRINEX,FIT,LAMEND
        DIMFNSION RUCK(20),ZERO(20),NSB(20),NSZ(20)
        DIMFNSICN Y1](200),U1(200),C(200)
        DIMENSION CT(20),TI(20,20),GN(20,20),NK(20)
        DIMENSICN ALAMB(200),ELEMNT(200),C1(200),C2(200),C3(200)
        OIMENSICN LTST(21),XLIST(21),REMARK(12),NRPS(20),TEST(2)
        DIMENSION TIMFI(90),XLO(90),YZERO(90),SLOPE(90),PATE(90).XHI(90)
        DIMENSION RUFR(15,133),LBUFR(15,133)
        EQUIVALENCE(FUFR,LRUFR)
        EQUIVALENCEILIST,XLIST)
C NTAP=LCEICAL TAPE NUMBER FOR TAMPORARY SCRATCH USE
    \becauseTAD=4
    \iP!=9
    NTP?=1n
    QL\triangleNK=1H
    CENTER=6HCENTER
    S1JRSOL = SHSURSOL
    ERASE KD,CSW
    ERASE NSCAN,IH,NDPS,NRT,NDT
    ERASE BUFR
    NSC=1
C READ DATE CARD. NRL IS THE NO. OF PHYSICAL RECORDS LEFT ON TAPE
C FROM LAST RUN. PUNCH O FOR NRL IF TO START A NEW TAPE
    REAn INPUT TAPE5,1,IYR,AMON,IDAY,NRL
        , FORMAT (1त,A2,?G)
        NPITE OUTPUT TAPEG,O9,IYR,AMON,IDAY
        9` FORMAT(1H1,I4,1XA3,I3,26X-LUNAR SCAN PROCESSING-)
            DAY=IDAY
            ERASF KEY
C KEY IS THE SWITCH FOR DIFFERENT ENTRY POINTS OF SUBROUTINES.
C READ PLACE + REFRACTION CARDS + EPHEMERIS TABLES BY MOON3
    CALL MOON3 (IYR,AMON,DAY,TSEC,KEY,SPOT,XI,ETA,AIP,ALTOBS,NFRAME,
    IALTSOL,AZOUT,PHASE,NSCAN,EDGE,DATUMI
C READ 6 GROUPG OF CONTROL CARDS BY CALLING TEMPR
    CALL TFMPR2 (NTAP,IPI,NPB,NPZ,DAY,KEY,TEMP,NTPI,BUFR,LBUFR,
    IIYR, AM\capN,InAY)
        KEY=1
C REAN HFADING CARDS AND PICTURE CARDS OF ONE WHOLE SCAN.
        10 READ I IPPIT TAPE5,2,(LIST(I),I=1,9)
        2 FORMAT (8G,AG)
            IF(LIST-NSTANI100,270,100
C SET UP FOR EACH HEADING CARD
    100 IF (LIST) 3, 30,16B
    168 NSCAN=LIST
    169 READINPUTTAPE99.7.(LIST(I),I=1,15)
        7 FORMAT (15G)
    170 I H=1H+1
C IH IS THE COINT OF HEADING CARDS
        IF(LIST(10)-LIST(3))3,3,101
        3 CALL RERFAD
            RFAD INPIJT TAPE5,4,REMARK
        4 FORMAT(12A6)
```

```
            WRITF OUTPUT TAPE6,5,REMARK
        5 FORMAT(1HO,1?AG,5X23HCARD ERROR OR MISPLACFD)
            CALL FXIT
    101 IF(LIST(2)-1)3,103,2
    1\cap2 IF(LIST(4)-?)2,?\cap4,?
    104 IF(LIGT(ll)->)2,ln5,?
    105 nolne J=?,l5
    106 CALL INNFIX(XLIST(J))
        TIMEI(IH)=XLIST(6)*2600.+XLIST(7)*60.+XLIST(8)
        TIMF?=XLIST(13)*3600.+XLIST(14)*60.+XLIST(15)
        XLO(IH)=XLICT(3)
        XHI([H)=XLIST(10)
        YZFRO(IH)=XLIST(5)
        YONF=XLIST(12)
        SLOPE(IH)=(YONF-YTFRO(IH))/(XHI(IH)-XLO(IH))
    110 RATE(IH)=(TINF2-TIMFI(IH))/(XHI(IH)-XLO(IH))
    RATE IG IN SFCONDS PER COUNT.
    IF(PATF(IH))?,?,1\cap
c
270 1F(XLICT(Q)/RLANK)271,273,271
271 IF(XLIST(G)/CFNTFR) 272,274,272
272 IF(XLIST(9)/SURCOL) 169,275,169
    273 ERAGF GROT
    GO TO 200
    274 SPOT=-1.
    GO TO 200
    275 ¢POT=+1.
    200 IF(LIST(2)-1)3,201,?
    201 IF(LIST(4)-2)3,?0?,?
    20? IF(LIST(5)-700)3,3,203
    202 }x=\LIST(3
    CALL UNNFIX(X)
C TO CHECK IF X IG IN BETWEEN XLO AND XHI
    IF((X-XLO(IH))*(XHI(IH)-X)) 3,204,204
    204 TGEC=TIMEI(IH)+RATF(IH)*(X-XLO(IH))
    NFRAME=LIST(6)
    XI=LIST(7)
    ETA=LICT(8)
C
    PROCESS THE OBSERVED PICTURE CARDS RY MOON3
    CALL MCON3 (IYR,AMON,DAY,TSEC,KEY,SPOT,XI,ETA,AIR,ALTOBS,NFRAME,
        1ALTSOL,AZO!JT,PHACE,NSCAN,EDGE,DATUM)
            go Tn 10
C VOW TO CHECK IF IT IS A DRIFT CARD OR NOT
    3n kгY=2
        CALL REREAD
        CALL MOON3 (IYR,AMON,DAY,TSEC,KEY,SPOT,XI,ETA,AIR,ALTOBS,NFRANE,
        IALTSOL,AZOUT,PHASE,NSCAN,EDGE,DATUM)
            NH=TH
C NH=NUMRER OF HEAD CARDS OF ONE SCAN
    NOW RFAD DATA CARIS OF WHOLE SCAN
    IH=?
    K=Y=?
    4O RFAN INPIIT TAPF5,S,LIST
    6 FORNAT (2IE)
        IF (LIGT-NSCAN) 120,370,120
    370 [TFM=2
```

```
    IF (LICT(ITFM)-1)3.380.3
    380 IF(LIST(ITEM+2)-2)3,4O0,3
C NDPC=NNMMER \capF DATA PER SCAN
    400 NDPG=NDPS+1
    40? IF(LIST(ITFM+3)-7OO)403,3.3
C Y READING AROVE 7OO IS A MIXED POINT CARD
    40: X=XLIST(ITFM+1)
            CALL IINFIX(X)
            IF((X-XLO(IH))*(XHI(IH)-X)) 3,404,404
    404 TSFC=TIMFI(IH)+RATE(IH)*(X-XLO(IH))
            Y=XLIST(ITFM+3)
            CALL |MFIY(Y)
            Y=Y-(YZERO(IH)+SLOPE(IH)*(X-XLO(IH)))+1000.
            OATIIM=Y
C
            CALL MOON3 (IYR,AMON,DAY,TSEC,KEY,SPOT,XI,ETA,AIR,ALTOBS,NFRAME,
            1ALTSOL,AZOUT,PHASE,NSCAN,EDGE,DATUMI
C
            CALL CCEFI2 (NTAP,IPI,NPB,NPZ,DAY,TSEC,KEY,EDGE,DATUM,KD,CSW,I,SCAN
            1!
r
            #RITE TAPE NTAP,TGFC,XI,ETA,AIR,ALTORS,ALTGOL,AZOUT,PHASE,NSCAN,
            1FDG=,DATUM,KN
            IF(ITEN-18)405,40,40
    405 ITEM=ITEM+4
            IF(LIST(ITEM)-1)4n,406,40
    406 IF(LIST(ITEM+2)-2)40,400,40
C
    120 CALL RFREAD
            R=\triangleN INPUT TAPE 5,8,TEST
        & EORVAT (2A3)
            HCARN=2HOOO
Q IFITEST/HCARDI50.50.50
C OO\cap CARD KFFPS THF COUNT OF HEADING CARDS
    50 IH=TH+I
            IF(IH-NH)4O,40,3
    60 KEY=1
            FIN=3HFIN
            CSCAN=3HO O
C TO CALCULATE NUMBER OF PHYSICAL RECORDS NEEDED PER SCAN. EACH
C RECORD CONTAINS 1995 WORDS AND EACH MEASURFD DATA GENERATE 15
C NORDS OUTPUT. HENCE EACH RECORD WILL ACCOMONDATE INFORMATIONS
C FRON 133 DATA POINTS. NO RECORD WILL HAVE INFORMATION FROM
r NIEEFRENT CTANIE
C NRPC=NUMBFR DF RECORD NEEDED PER SCAN
    IF (XMODF (NNPS,133)) 71,70,71
    7\cap NRPC(NCC)=NDPS/133
    GOTO 72
    71 NRPS(NSC)=(MDPS/133)+1
    7? NDT=NDT+NDPS
        I=(TEST(2)/FIN) 69,80,69
        67 IF(TEST(2)/CC(AN)3.73.3
            SREDARE FOR NEXT SCAN
    73 FRACF NCCAN,IH,NDPC
        N<r=N&C+1
    On TO 10
r
C START TO DROCESS FIN CARD
```

8O CONTINIIE
CALL COEFI2 INTAP,IPI,NPB,NPZ,DAY,TSEC,KEY,EDGE,DATUM,KD,CSW,NSCAN
1)

DO $81 \quad \mathrm{I}=1, \mathrm{~N} S \mathrm{C}$
91 NRT $=N R T+N R P S(I)$
C NRT=TJTAL PHYSICAL RFCORD NEEDED FOR THIS RUN
c TO DRFPARF FOR OUTPIJT
NRL = NRI -NRT
IF (NRL)501,502,50?
C TO STADT WITH A NFW TAPE
C EACH 2200 FEET TAPE WILL HAVE 1680 PHYSICAL RECOPDS
r CALL COPY LATER
501 RFWIND NTPI
$N R L=N R L+1680$
GR TO 503
502 REWIND NTP1,NTP?
c. FOLLOWING IS THE DATE OF THE LAST DATA OF THIS RUN

503 NDAY=DAY+TSEC/86400.
NHO:JR=MODE (TGFC./3500.,24.)

GER=MONF(TSFC.6O.)
WRITE OUTPUTTAPE 6,82,IYR,AMON,NDAY,NHOUR,NMIN,SEC,NSC,NDT ,NRT,
1 NRL
82 FORMAT (39HOLINAR TEMPERATURE MEASURFMENTS FNDING, $14,1 \mathrm{X}, \mathrm{A} 3, \mathrm{I} 3,13$,
15 H HOUR, $13,4 \mathrm{H}$ MIN.F6. $2,5 \mathrm{H}$ SEC, $/ 7 \mathrm{H}$ COVER , I2, 6 H SCANS, $15,27 \mathrm{H}$ DATA P 2OINTS. FOR THIS RUN,I3,29H PHYSICAL RECORIS ARE NEEDEU./30H AFTER 3 THIS RUN THERE WILL BE , $14,34 H$ PHYSICAL RECORDS LEFT ON THE TAPEI WRITE TAPE NTAP,LIGT
END FILE NTAP
REUTND NTAD
CALL TFMPR2 (NTAP,IP1,NPB,NPZ,DAY,KEY,TEMP,NTP1,BUFR,LBUFR,
IIYR,AMON,IDAY)
CALL EXIT
ENi

```
* LISTB
* Larrl
* SymROL tarle
CTEMPR2
C SUIRROUTINE TEMPR2 TO COMPUTE TEMPERATURE DISTRIGUTION OF MOON SUR-
C FACE. REVISFN FROM TFMPR,JAN. }1966\mathrm{ RY Y.C.HU
    SURROITINF TFMPRZ (NTAP,IPI,NPB,NPZ,DAY,KEY,TEMP,NTPI,BUFR,LBUFR,
        IIYR,AMCN,IDAYI
            COMMCN R!ICK,ZERO,FSSON,NSE,NSZ,Y1I,U1,C,CT,TI,GN,NK,ALAMB,ELEMNT,
            1Cl,C2,C3,PLAN,OH2O,CAUSE,COEF,AVOIDC.IMAX,PRINEX,FIT,LAMEND
            DIMENSION ZUCK(20),ZERC(20),NSB!2?),NSZ(20)
            MIMFNSION Yl1(20n),Ul(200),C(200)
            OIMENSION CT(20),TI(20,20),GN(20,20),NK(20)
            DIM=NSION ALAME(20)),ELEMNT(200),C1(200),C2(200).C3(200)
            DIM=NSION <ST(3,34:),F(340),S(340)
            DIMENSION BUCR(15,133),LBUFR(15,133)
            IF (KEY) 9099,5100,5200
C NTEM=NUMNER OF TEMPERATURES
    51On NTFM=324
            R=7.0075-5
C Tn=INITIAL TEMPFRATIRE-I
    Tn=Qa.n
    AM!PRO=1.OF-R
C NTAP=LOGICAL TAPE NUMBER FOR TEMPORARY SCRATCH USE
    FRASE RUCK,ZFRO
    ZER=3HZFR
    BUIC=2HRUC
C READ BUCKING SIGNAL CONSTANT IN COUNTS/MILLIMETER
    PFAN INPUT TAPE 5.1024.BSCON
    1C24 FORMAT(10X,F12.6)
            N=?
            NPR=7
C RFAD IN TABLF OF RUEKING SIGNALS
    1019 RFAO INPUT TAPE 5,!O20,TYPE,(NSB(I),QUCK(I),I=N,NPB)
    1020 FORMAT(A3,3X,7(I3,1X,F5.1,1X))
            \=N+7
            NPQ=NPQ+7
? IF(RUC/TYDE)1021,1019.1021
    1021 IF(VSE(NPB)) 1011.1012.1011
    1012 IF(NPB-i) 1013,1011,1013
    1\cap13 NPB=NPR-1
            GO TC 1021
    1011 N=1
            NPZ=7
C RFAN IN TARLE OF ZFRO SUPPRESSION VALUES
    102? PFAN INPUT TAPE 5,]n20,TYPE,(NSZ(I),ZERO(I),I=N,NPZ)
            N=N+7
            NPZ=NPZ+7
H IF(ZER/TYPE)1023.1022.1023
    1023 IF(NSZ(NPZ)) 1014,1015,1014
    1015 IF(NPZ-1) 1016.1014.1016
    1016 NPZ=NPZ-1
            GO TO 1023
    1014 ERASE CLAST
C REAN RADIANCFS FROM PRE-COMPUTED TABLES
    REAN INPUT TAPES,I:(S(I),I=1,NTEM)
    1 FORMAT (GF12.f)
    CAIL FAKIR(S,CST,TO,NTEM)
```

```
            NTFV=NTEM
            NTMII=NTFM-1
C READ IN THE ARRAY OF GAIN COEFFICIENTS
            CALL GAIN(IPI)
    9990 RFTURN
C
    5200 REWIND NTAP
            IPI=IP\ +1
            !=?
            OFF=3HOFF
            ERAGF SAVF
            FRAGF KOUNT,L,N,BUFR
            M=124
            1EDGE,DATUM,KN
                NOAY=DAY+TSEC/86400.
            NHOUR=MODF(TSEC/3600.,24.)
            NMIN=MODF(TSFC160.,60.)
            SFC=MONF(TSFC,60.)
Q 112 IF (OFF/EDGF)l13,537.113
    113 11T=nAY+TSFC/86400.
                            YP=C(KD)*(TSFC-U1(KD))+Y11(KD)
C YR=VALIIF OF Y AETFR THE LINFAR ADDITION IS MADE
    YB=(DATUM-YD)
C GENFRATE THF FUNCTION F FOR EVERY TEMPERATURE AT THE GIVEN TIME
    IF(AIR-SLAST)200,4999,200
    200 DO 201 K=1,NTEM
    201 F(K)=R*S(K)*EXPF(-CST(3,K)*AIR**(CST(l,K)*LOGlOF(AIR)+CST(2,K)))*
    IAMICRO
C. MICRO SCALES RADIANCFS,S, TO WATTS PER CM**2 RATHER THAN MICROWATS
    CLACT = AIR
    4070 <IGNAL=YR#GT(1)T,ID1)
C
    DO ROO\cap K=1,NTEM
    g\cap\cap) F(K)=F(K)+CAVE-SIGNAL
            S\triangleVF=CIGNAL
            SENSF LIGHT O
C. DFTFRMINE SIGN CHANGE OF F
            DO 2000 K=1,NTMII
            IF (F(K)*F(K+1))30.32,2000
        30 IF (SENSE LIGHT 2)35,34
        35 WRITE OUTPUT TAPE 6,7001,UT
    7001 FORMAT (26HOADDITIONAL ZERO FOR TIME=F10.6)
            SENGE LIGHT ?
            GO TO POOO
C DFTFRMINF THF TFMPFRATURE BY INVERTING F
        34 TL=F(K)
            TR=F(K+1)
            TKl=K
            GENSF LIGHT 1
            SFNGE LIGHT 2
    2OOO CONTINUE
c
    IF ISENSE LIGHT 1)45.537
    637 TFMD=-0.
            GO TO 2005
C
        45 XL =TK1+TO
```

```
        YR=XL+1.0
C INVERT F BY HSING GENERAL FORMULA FOR REGULA FALSI
        TFMP=((XR*TL)-(XL*TR))/(TL-TR)
        GO TO 2005
c
C TEMD=TFMPERATURE FOR TIME UT
        32 IF(F(K))824,824,873
    6 2 3 ~ T E M P = K + 1
        TFMD=TFMP +TO
        GO Tn 2005
r
    824 TFMD=FLOATF(K)+TO
    2005 IF (TCFC)208,308,301
        301 KOHNT=KOUNT+1
        L=L+:
        M=M-1
        IF(KOUNT-1)302,302,303
        3O2 N=NCCAN
C NRITE PAGF HFADING
        WRITE DUTPIIT TAPEG,888,NSCAN,AMON,IDAY,IYR,IYR,AMMON
    SB8 FORMAT (1H1,10X,47HFPHEMERIS AND TEMPFRATURF DATA OF LUNAR SURFACE,
        124x,4!H5CAN,I5,5X,A3,13,15/1
        25Y,11HCCAN NATA ,I4,IXA3,7H ,23X.55HAIR ELEVATION OF EAR
        3TH ATH. PHASE TFMPERATURE /
        4EX,IOIHNO. NO. D H M SEC XI ETA MASS EART
        5H SUN FROM SUN ANGLE DEGREE K //
    303 IF(N-NCCAN)304,305,304
    304 ERACE KOUNT,L
        v=134
C CALL WRITE LATER
        G) TO 301
    305 IF(L-55)307,307,306
C TITLF FOR FACH PAGF OF PRINTED OUTPUT
    3O6 URITE OUTPUT TAPES,986,NSCAN,AMON,DAY,IYR,IYR,AMON
        ERAGF L
    307 WRITE OUTPUT TAPE6,999,NSCAN,KOUNT,NDAY,NHOUR,NMIN,SEC,XI,ETA,AIR,
    1دLTORS,ALTSOL, AIOUT,PHASE,EDGF,TEMP
    999 FORMAT (4X2I5,1X3I3,F6.2,1X2F9.4,F9.3,2X,2F6.1,2F9.1,3X,A3,F9.2)
        STORE OUTPUT IN B!JFFER AND THEN TRANSFER TO TAPE
        EACH DATA GENERATES l5 WORDS OUTPUT. EACH PHYSICAL RECORD WILL
        HAVE 1975 WORDS OUTPUT OF 133 DATA POINTS.
        LBUFR(15,M)=NSCAN
        LSUFQ(14,M)=KOUNT
        LQUFR(13,M)=nAY
        LQUFR(12,M)=NHOUR
        LRUFR(11,M)=NMIN
        RUFR(1O,M)=SEC
        SUFR (9,M)=XI
        BUFR(3,M)=ETA
        BUFR(7,M)=AIR
        3!JFR(5,M)=ALTOBS
        BUFR(5,M)=ALTSOL
        BUFR(4,M)=ALZOUT
        BUFR(3,M)=PHASE
        BUFR(2,M)=EDGE
        BUFR(1,M)=TFMP
        IF (M-1)3n8,308,111
    308 CONTINUE
```

C CALL WRITF LATFR
$M=134$
GO TO 111
ENO

```
* LIST8
* LABEl
* symrol tarlf
CMOON3 REVISFD TO RE GIJRROUTINE OF LUNAR. JAN.1966 BY Y.C.HU
C PROGRAM FOR LUNAR COORDINATES WITH DIFFERENTIAL REFRACTION.
CURRCUTINE MOON3 (IYR,AMON,DAY,TSEC,KEY,SPOT,XI,ETA,AIR,ALTOBS,
    1NFRAME,ALTSOL,AZOUT,PHASE,NSCAN,FDGF,DATUM)
    DIMFNSION ALPHA(500),DELTA(500),TSUBB(500),S(50),PIE(50),TSUBA(50)
    x,DECODE(7),RECORD(20),TSUBC(25),EL(25),BE(25),COLONG(25),SLAT(25),
    XC(25),TIME(O0), XIOBS(90),ETAOBS(90),DELTAT(1),TOPDEC(70),HAT(70)
    DIMFNSION T(90),H(90),D(90),FRAME(90)
    EG(IIVALENCF(YFARA,IYFARA)
    TSIBA IS ARTUNFNT FOR S, PIE
        TSIIRE IS ARTIIMENT FOR ALPHA.DELTA
        TSUBC IS ARGUMENT FOR PHYSICAL EPHEMERIS
    ORNER INFUT PARAMETERS AS FOLLOWS......
    FIRST TABLES MOON FOR O AND }12\mathrm{ HOURS E.T.
    FORMAT -- YFAR,MON,DATE,SEMIDIAMETFR,PARALLAX.
    SECOND TABLFS HOURLY EPHEMERIS.
    FORMAT -- YEAR,MON,DAY,HOUR,ALPHA,DELTA
        THIPD TABLFS PHYSICAL EPHEREMIS
    FORMAT -- YFAR,MON,DAY,EARTH-S LONG.+LAT.,SUN-S COLONG.+LAT.,P.A.
        THEN CCAN DATA.....
        YEAR,MON,DAY,HOUR,MIN,SEC(U.T.),XI,ETA,SCAN NO., FRAME NO.
    DATA DECODE{36HPLACE REFRACTABLEATABLEBTABLEC ),DELTAT(35.)
        PLACE = STATION COORDINATES.
    REFRACTION = WAVELENGTHS FOR DISPERSION.
    TABLEA = SEMIDIAMETER AND HORIZONTAL PARALLAX DATA.
    TABLEB = GEOCENTRIC LUNAR COORDINATES.
    TABLEC = PHYSICAL EPHEMERIS.
        PRINT = DHOTOGRAPHIC LOCATION CARN.
        RLANK CARD GIGNALS END OF SCAN.
        DFLTAT IS F.T.-U.T.(SECONDS).
    DIMFNSION SCALE(GO)
    DATA SCALE(360H-1OSFC -9 SEC -8 SEC
    X -7 SEC -6 SEC -5 SEC -4 SEC
    lllllll
    XSEC +8 SEC +5 SEC +9 SEC +6 SEC +10SEC) +7 SEC
C PLUS AND MINUS 10 SECONDS FOR GRAPH.
    IF(KEY-1) 1601,400,1602
    1502 IF(KFY-2) 400,FOn,562
    1601 CFCTS=4.85F-5
    GFCTM=-5ECTP
    CALL SFT(39,X)
    ERACE XMON,NTBL,NORG ,DNM1
    PIHLF=1.5707953
    TWOPI=4.*PIHLF
    DEGRAD=57.2957795
```

```
    PARSEC=DFGRAD*3600.
    RALDH=חFGRAO*240.
    --- RALPH CONVERTS SECONDS OF TIME TO RADIANS)
    WRITEOIITPHTTAPFG,G
    FORMAT (27HOLIINAR EPHEMERIS INPUT DATA)
    RFAN INPUTTAPF5,5,CODF
    FORMAT(12AS)
    DO 1 I=1,5
    IF(CODF-DFCONF(I) )1,2,1
    CALL RFREAD
    GO TO1600,700,100,200,300,9000), 1
    contINUE
    WRITEOUTPUTTADEG,4,CODE
    FORMAT (15HOILLEGAL CODE (AG,1H))
    CALL RFRFAN
    RFANINPUTTAPF5,5,(RFCORD(I),I=1,12)
    WRITFOUTPIITTAPE6,6,(RFCORD(I),I=1,12)
    FORMAT(16HODATA (ARD ERROR/IHO,12A6)
    CALL EXIT
        STOP IF RAD DATA.
    RFAN PLACE DATA.
    READ INPUT TAPE 5,601,PLACE1,PLACE2,(RECORD(I),I=1,7)
    FORMAT(6X,2A6,7G)
        (PLACF) IS FOLLOWED BY STATION NAME (12 SPACES), LONGITUDE WEST
        IN TIME UNITS, LATITUDE, HEIGHT IN METERS.
        OO 602 I=1,7
GO) CALL INNFIX(RFCORD(I))
        HFIGHT=RFCORO(7)
        FRFQUENCY608(1,0,0),609(1,0,0)
608 IF(ARSF(RFCORD(4))-90.)609,3,3
609 IF(ARSF(RFCORD(1))-24.)610,3,3
610 K=4
        DO 611 I=1,4
        N=K/2
        FREQUENCY 607(0,0,1)
        IF(RECORD(N)*(60.-RECORD(N)))3,612,612
612 
612 
GI1 CONTINIIF
        WLONG=(RECORD(1)*3600.+(RECORD(2)*60.+RECORD(3)))/RALPH
        PHI=(RFCORD(4)*3600*+(SIGNF(RECORD(5),RECORD(4))*60.+SIGNF(RECORD(
        X6),RECORD(4)1)1/PARSEC
            PHI IS ASTRONOMICAL LATITUDE.
        SINPHI=SINF(DHI)
        COSDHI=COSF(PHI)
        IH=RECORD(!)
        IM=RFCORD(2)
        ID=RFCORD(4)
        IDM=RFCORD(5)
        WRITEOUTPUTTAPE6,503,PLACE1,PLACE2,IH,IM,RECORD(3),ID,IDM,RECORD(6
        X),RFCORD(7)
603 FORNAT(1HO,2A6/10HO H M S/2I3,F6.2,12H W.LONGITUDE/1HO,2I3,F5.1
        X.3H LATITUDF/19HOFLFVATION (METERS)F6.0)
        HELP=SQRTF(1.-.00672267*SINPHI**2)/(1.+1.567794E-7*RECORD(7))
        RHOCOS=COSPHI/HELP
```

```
    RHOSIN=SINPHI*.99327732/HELP
C ELEVATION CORRECTION IS APPROXIMATE BUT CLOSE ENOUGH.
C ERPOR IS RELOW 1 ARCSEC FOR H BELOW 10 KM.
    GO TO 10
r
C RFAN RFFRACTION WAVFLENGTHS.
7OO RFANINPUTTAPF5,701,DGL,SIGL
701 FORVAT(2G)
C -REFRACTION- IS FOLLOWED BY PHOTOGRAPHIC AND DETECTOR
        FFFECTIVE WAVELENGTHS (ANGSTROMS OR NICRONS).
        CALL UNFIX(PGL)
        CALL UNFIX(SIGL)
        IF(DGL-1000.)702.702,703
    PGL=PGL /10000.
C CONVERT TO MICRONS IF IN ANGSTROMS.
702 IF(CIGL-1\capO\cap.)704,704,705
705 EIGL=SIGL/10OOO.
704 PIGL=1./PGL**2
        SIGLL=1./CIGL**2
        !!SF FDLFN FORMULA.
        DNM1=2.94981F-2*(1./(146.-PIGL)-1./(146.-SIGLL))+2.554E-4*(1./(41.
    X-PIGL)-1./(4I.-SIGLL))
        DNM1= DNMI*EXPF(-HEIGHT/8000.)
C ASSIMME 8 KV SCALE HFIGHT.
        PIGL=DNMI*PARSEC
        WRITEOUTPUTTAPE6,710.PGL,SIGL,PIGL
71O FORMAT(1HO/24HOPHOTOGRAPHIC WAVELENGTH FG.3.21H DETECTOR WAVELENG
    1TH F7.3,26H DIFFFRENTIAL REFRACTION F5.1.7H ARCSECI
        G) TO 10
C
C TARLF A DATA -- DISTANCE DATA.
100 NSURA=N!SURA+1
    FREQUENCY 151(1,0,0)
151 IF(NSUBA-50)150,150.10
150 READ INPUTTADE5,99,(RECORD(I),I=1,7)
99 FORMAT(1G,A3,19G)
    YFARA=RECORD
    FREQUENCY 152(0,1,0)
152 IF(XMON-RECORD(2))50.101.50
50 ERACF NSIJRA,NSURB,NSUBC
    XAO*:=PECORD(2)
    Gn T^ >0
    FRFOUFNCY 101(0.5,1)
    IF(NTBL-1)102,103,102
192 W!RITECIITPUTTAPE6,104,YEARA,XMON
104 FORMAT (17H3RADIAL EPHEMERIS/IHO,I4,1X,A4,5X12HSEMIDIAMETER5X8HPARA
    XLLAX/IX)
    NTRL=1
    DO 106 I= 3,7,2
    CAIL UNFIX(RFCORD(I))
    WRITFOUTPIJTTAFEǴ105,(RECORD(I):I=3.7)
105 FORMAT(F10.1,I8,F7.2.I9,F8.3)
    CALL UNFIX(RFCORD(4))
    CALL UNFIX(RFCORD(6))
    G(NCUBA)=(60.*RECORD(4)+RECORD(5))/PARSEC
    PIE(NSUBA)=(60.*RECORD(6)+RECORD(7))/PARSEC
```

```
    TSURA(NSUBA)=RECOR\cap(3)
    FREQUENCY 254(0,0,1),211(1,0,0)
    IF(RECORD(N))3,211,211
    IF(RFCORD(N)-60.1212,3,3
    <=k+?
    N=6, ?,0,10
    CONTINUE
    ALPHA(NSUBB)=((3600.*RECORD(5)+(RECORD(6))*60.+RECORD(7)))/RALPH
    DELTA(NSUBA})=(13600.*RECORD(8)+SIGNF(RECORD(9),RECORD(8))*60.)
    XSIGNF(RECORD(10),RECORD(8)))/PARSEC
    TSURB(NSUBB)=RECORO(3)+RECORD(4)/24.
        ***** TABLF B ROM DONE. *****
    GO TO 10
C
(C) READ PHYSICAL EPHEMERIS.
300 NSHIRC=NSURC+1
        FRFQUENCY 351(1,0,0)
351 IF(NGURC-25)350,350,10
251 RFANINPUTTAPF5,99,(RECORD(I),I=1,8)
    YEARC=RECORD
    FREQUENCY 352(0,1,0),301(1,5,0)
    IF(XMON-RECORD(2))50,301,50
    IF(NTBL-3)302,303,302
    WRITEOUTPUTTAPE6,304,YEARC,XMON
    FORMATI//3OH3GEOCENTRIC PHYSICAL EPHEMERIS/1HOI4,1XA6,53HEARTH-S S
    XELENOGRAPHIC SUN-S SELENOGRAPHIC P.A. OF/l3XI9HLONGITUDE LATI
    XTUDF 6 % 7HCOLONG. 4 X4HLAT. }7\times4\textrm{HAXIS/IX)
        FORMAT(I9,F11.2,F10.2,F15.2,F8.2,F12.2)
        NTRI=3
        DO 310 I=4.8
210 CALL UNFIX(RECORN(I))
```

```
303 WRITEOUTPUTTAPE6.305,(RECORD(I),I = 3,8)
C CONVERT ANGLFS TO RADIANS AFTER RANGE CHECK.
    DO 311 I=4,8
353 IF(ABSF(RECORD(I))-360.)311.3,3
    FREOUENCY353(1,0,0)
311 RECORD(I)=RECORD(I)/DEGRAD
    FREQUENCY 354(0,0,1),312(0,0,1)
354 IF(RECNPD(5))3,312,312
312 IF(RECORD(8))3,313,313
213 EL(NSURC)=RF(ORD(4)
    RE(NSURC)=RFCORD(5)
    COLONG(NSUBC)=RECORD(6)
    SLAT(NSUBC)=RECORO(7)
    C(NSUBC)=RECORD(B)
    TSURC(NSUBC)=FLOATF(RECORD(3))
    GO TO 10
C *****PHYSICA EPHEMERIS NOW HAVE BEEN FINISHE READIND
9000 READ INPUT TAPE5.9001.BLANK
OON! FORNAT (AG)
    DETIIRN
C
C 4OO SFRIES PROCESS OBSERVED LUNAR POINT CARDS
C
400 IF(NOBS)3.420.902
C ***********PLACE INCONSISTENCY TESTS HERE ***************************
420 IF(YEARA-YEARB)430.401,430
401 IF(YEARB-YEARC)430,402,430
402 IF(IYR-IYEARA)430,403.430
430 WRITEOUTPUTTAPE6.431
4 3 1 ~ F O R M A T \{ 3 8 H 3 T A B L E S ~ D O ~ N O T ~ R E F E R ~ T O ~ T H E ~ S A M E ~ Y E A R . ) ~
    GO TO ?
    403 IF(AMON-XMON)435,497,435
    435 WRITE OUTPUT TAPEG.436
436 FORMAT (27H4)ATA REFFR TO WRONG MONTH.)
    GO TO ?
    4 9 7 ~ Y F A R = F L O A T F ( Y E A R A ) ,
        IDAY=DAY
            WRITE OUTPUT TAPE 6,421,NSCAN,IYR,AMON,IDAY
    4 2 1 ~ F O R M A T ~ ( 2 O H 1 L U N A R ~ S C A N ~ G E O M E T R Y , ~ 2 6 X , 4 H S C A N , 1 5 , 3 0 X 1 4 , 1 X A 3 , 1 3 / , ~
        X7X,18HU.T. FRAME,18X. 75HH
        XOUR ANGLE DECLINATION AIR ELEVATION OF EARTH AZIMUTH PHA
        XSE SCAN/21X,3HNO.6X2HXI5X3HETA 3OX4HMASS5X4OHEARTH SUN FROM
        XUNN ANGLF NO./16H D H M S)
            ERAGE NTSL
    902 IF(NORS-9O)404.1100.1100
1100 W:RITEOUTP|TTAPE6.1101
1101 FORMAT (44HOTOO MANY DATA... PROGRAM CONTINUES READING)
    RETURN
C ********* ALL TIMES ARE DAYS AND DECIMALS.
C ********* ALL ANGLES ARE RADIANS.
404 NORS=NOBS+1
C MAKF SURE XI AND ETA WERE SCALED
    CALL UNFIX(XI)
    CALL UNFIX(FTA)
    IF(ARSF(XI)-1.)446,445,445
    445 XI=XI/1000.
    446 IF(ARSF(ETA)-1.)448,447,447
    447 ETA=FTA/1000.
```

```
    448 FRAME(NOBS)=NFRAMF
    XIORS (NOBS) = XI
    ETAOBS (NOBS)=ETA
    UT=TAY+TSEC/86400.
    TIMF(NOBS)=UT
    ET=DAY+(TSEC+DELTAT)/86400.
C
C
410 NORS=NORS-1
    WRITEOUTPUTTAPE6,41?,PLACE1,PLACE2,(RECORD(I),I =1,6)
412 FORMAT (22HOMCON BELOW HORIZON AT 2AG,I6,1X,A3,3F4.0,F5.1)
    GO TO 2
411 SINZG=SQRTF(1.-COSZG**2)
    PIG=TARLE(PIF,TSIJBA,ET,NSUBA)
    SPIG=SINF(PIG)
    GIGMA=PIG*GINZG*(1.+.0168*COSZG)
C SIGMA IS TOPOCFNTRIC PARAILLAX.
    STNO= STNHAG*COCPHT/CTNZG,
    COSQ=(GINPHI-COCIG*(INDG)/(COSDG*SINZG)
    Q=ARTNF(SINO,COくQ)
    CEA=TABLE(C,TSUBC,UT,NSUBC)
    OMC=Q-GEA
    BEG=TARLF(BE,TSUBC,UT,NSUBC)
    OL =-SIGMA*SINF(QMC)/COSF(BEG)
    TOPLNG=TARLE(EL,TSURC,UT,NSUBC)+DL
    TOPR=BFG+SIGMA*COSF(OMC)
C TOPLNG AND TOPB ARE TOPOCENTRIC LIBRATIONS.
    CL=COSF(TOPLNG)
    SL=CIMF(T\capDLNG)
    CB=COSF(TOPR)
    GR=CINF(T\capPR)
    TOPC=SFA+DL*CR-GIGMA*SINQ*SINDG/COSDG
c
TOPC IS TOPOCENTRIC POSITION ANGLE OF LUNAR POLE.
    NOTE THAT I DEGRFE OF LUNAR LONGITUDE OR LATITUDE = 15 ARCSEC ON
    THF SKY. 0.1 LUNAR DEGREE = 1.5 SFC = .0016 IN LUNAR STANDARD
    COORDINATES. THUS.OOI ON MOON IS ABOUT 1 ARCSEC OR I MILE.
        USF N.A. AUIILIARY VARIARLES..... (FXP.SUPP., P.60)
        AX=C\cap\Omega\capG**\INH\DeltaG
```

Q $x=$ COSnG*COSHAG-RHOCOS*SPIG
$C X=\Omega$ INNG-RHOCIN*SPIG
$D X=\Delta X * * 2+B X * * 2$
$F X=C Q R T F(D X+C X * * 2)$
$S X=S Q R T F(D X)$
HTOP = ARTNF $(\Delta x, B x)$
DECTOP=ATANF(CX/SX)
c
C CONVFRT TO RECTANGULAR AXES TO OBSERVER AND LUNAP POLE.
$X=X I * C L-Z F T A * S L$
$V=F T A * C R-C R *$ CLOn
$Z=E T A * C B+C R * C L O \cap$
C NEXT, TRANSFFR ORIGIN TC OBSERVER AND ROTATE TO PUT X AND Y AXES
COSC=COSF (TOPC)
SINC=SINF (TOPC)
$\mathrm{R}=3.670 * F \mathrm{~F} / \mathrm{SDIG}$
$X P=-X * \cos C+Y * \operatorname{SINC}$
$Y P=X * S I N C+Y * C O S C$
$Z P=R-7$

- NOW ROTATE $7-A X I S ~ D O W N ~ T O ~ E Q U A T O R . ~$

SD $=r X / F X$
$r n=5 x / E x$
RIGX=xp
$B 1 G Y=Z P * S D+Y P * C D$
$B I G Z=Z P * C D-Y P * S D$
CONVERT TO FQUATORIAL ANGULAR COORDINATES.
$D A P=A T A N F(B I G X / B I G Z)$
DELTAP = ATANF(BIGY/SQRTF(BIGX**2+BIGZ**2))
C COLLFCT FOR MFANS.
HAT (NORS) = HTOP-DAP
SINDEL = SINF (DELTAP)
COSDEL $=$ COSF (DELTAP)
COSZT = SINDEL*SINPHI + COSDEL*COSPHI*COSF(HAT(NOBS))
$A I R=1 . / C O S Z T$
AIR=AIR*(1.-.0012*(AIR*AIR-1.))
C MAKF RFFRACTION CORRECTIONS.
C CORRECT ONLY FOR ATMOSPHERIC DISPERSION.
RFFR = DNMI*AIR/COSNFL
C AIR IC NEARLY SFC Z.
HAT (NOPS) = HAT (NOBS)-REFR*SINF(HAT (NOBS))*COSPHI
TOPDEC $($ NOSS $)=$ DFLTAP +RFFR* (SINPHI-COSZT*SINDEL)
C IGNORF SOLAR PARALLAX.
SOLONG=PIHLF-TARLE (COLONG,TSUBC,UT,NSUBC)
SOLAT=TARLE(SLAT,TSUBC,UT,NSIIBC)
COSOL=COSF(SOLAT)
COSLNG=COCF(GOLONG)
XISIN=CINF(GOLONG)*COSOL
FTACUN=SINF(COLAT)
ZFTASN=COSLNG*COSOL
COSZ=XI*XIS!!N+ETA*ETASUN+ZETA*ZETASN
COCe=COSZ
SINS=SQRTF(1.-COSC**2)
ALTSOL=DEGRAD*(PIHLF-ACOSF(COSZ))
C ALTSOL IS SOLAR ALTITUDE IN DEGREES.
NOW FOR ORGERVER-C COORDINATES FROM POINT ON MOON.
FIRST GET VFCTOR (FOINT-OBSERVER) IN (X,Y,Z) SYSTEM.
X\capRC=-X
V\capDC=-V
ZORC=2P
C REMFMBFR THAT ZP=R-Z.
C NOW CONVERT TO DIRECTION COSINES.
CLOD=ZORS*CR-YORS*SB
XIO=XORS*CL+CLOD*CL
ETAO=YORS*CB+ZOBS*SR
ZFTAO=-XORS*CL+CLOD*CL
NORMALIZF.
CLON=SORTF(XIO*XIO+FTAO*ETAO+ZETAO*ZFTAO)
XIO=XIO/CLON
FTAO=FTAO/CLOD
ZETAO=ZFTAO/CLON
COৎT=XI*XIO+FTA*ETAO+7ETA*ZETAO
COGF=COSZ
SINF=SQRTF(1.-COSE**2)
ALTOBS=DEGRAD*(PIHL.F-ACOSF(COSZ))
ALTOBS IS ALTITUDE OF OBSERVFR IN DEGREES.
COSES=XIO*XISUN+ETAO*ETASUN+ZETAO*ZETASN
PHAGE=ACOSF(IOSFS)*DEGRAD
AZOUT=ACOSF((COSES-COSS*COSE)/(SINS*SINE))*DEGRAD

```
C NOW OIITPIIT RFSIILTS FOR THIS FRAME. ***************
C
        WRITFOITTPITTAPEG,499,ID,IH,IM,SEC,NFRAME,XI,ETA,IHAH,IHAM,HAS,IDEG
        X,IDM,DFCSFC,AIR,ALTORS,ALTSOL,AZOUT,PHASE,NSCAN
499 FORMAT(I3,214,F7.2,I6,F9.3,F8.3,2(I5,I3,F5.1),F8.3,2F8.1,2F111.1,I5
        X)
        RETIIRN
C
C************************************************************************
C NO'N THE FUN REGINS $$$$$$$$$$$$$
C************************************************************************
C
500 RFAN INPUITTADE5,90,CTFP
C STED RFFFRE TO TRATE MODE ONLY.
WRITFO!ITPITTAPF6,542,PLACE1,PLACE2
542 FORMAT (1HO73\times32HNOTF -- -EARTH- MEANS CBSERVER (2AG,IH))
    FRAGE TRACFR
543 CODF=WORDSF(x)
    FREOUENCY 1OO5(2).1.20)
1005 IF(CODE-5HTRACE)544,545,544
545 TRACER=STEP
    CALI UNFIX(STFP)
    CTEP=STFP/86400.
    CO TO 543
544 IF(CODF)540,541,540
541 COn==1H
540 ERAGE TMEAN,HATMEN,DTMEAN
    DO 501 I=1,NOBS
    TMFAN= TMEAN+TIME(I)
    HATMEN=HATMFN+HAT (I)
501 DTMFAN=DTMFAN+TOPDFCII)
    OBSNO=NOBS
    TMEAN=TMEAN/ORSNO
    HATMFN=HATMEN/ORSNO
    DTMFAN=DTMEAN/ORSNO
    NOW WE HAVF MEAN TIME, HOUR ANGLE, AND DFCLINATION.
    IH=MODF(TMFAN,1.)*24.
    IM=MNDF(TMEAN*24.,1.)*60.
    =FC=MONF(TMFAN*1440.,1.)*60.
    DFLTA= RTMFAN*DEGRAN
    IDFG=DFLTA
    IDM=ABSF(MODF(DFLTA,1.)*60.)
    DFCSFC=ABSF(NODF(DFLTA*60..1.)*60.)
    HA=HATMEN*RALPH/3600.
    IH\DeltaH=H\Delta
    IHANA=ABSF(MODF(HA,1.)*60.)
    HAS=ABSF(MODF(HA*60.,1.)*60.)
    IIT=TMFAN
r
    ET=11T+חFLTAT/86400.
    TANGLF=6.2831853*MODF(UT.1.)
    AG=TABLE(ALPHA,TSURA,FT,NSUBB)
    DG=TABLE(DELTA,TSUBB,ET,NSUBS;
    SINDG=SINF(DG)
    COSDG=COSF(DG)
    HOT=TANGLF*1.00273791-WLONG-AG
    JDAV=UT
    HAG\capAY = JDAY
```

```
    HAG=SINNEY(YFAR,XMON,HAGDAY)+HOT
    SINHAG=SINF(HAT)
    COCHAG=COSF(LAG)
    COSTG=SINDG*CINPHI +COSDG*COSPHI*COSHAG
    SINZG=SQRTF(1.-CO&ZG**2)
    PIG=TARLF(PIF,TSUBA,ET,NSUBA)
    SIGMA=PIG*STNZO*(1.+.0168*(OSZG)
    SINO=SINHAG*COSPHI/SINZG
    COSQ=(SINPHI-COSZG*SINDG)/(COSDG*SINZG)
    Q=ARTNF(SINQ,COCQ)
    QMC=Q-TABLE(C,TSURC,UT,NSUBC)
    BEG=TARLE(RF,TSUARC,UT,NSURC)
    DL=-SIGMA*CINF(QMC)/COSF(REG)
    TOPLNG=TARLF(EL,TSURC,UT,NSUBC)+DL
    TOPQ=AFG+SIGMA*COSF(QMC)
C
    XI=SINF(TOPLNG)*COGF(TOPB)
    ETA=SINF(TOPR)
    XI AND ETA ARE TOPOCENTRIC DISC CENTER.
    SOLONG=PIHLF-TABLE(COLONG,TSUBC,UT,NSUBC)
    SOLAT=TABLE(SLAT,TSI|BC,UT,NSUBC)
    XISUN=SINF(SOLONG)*COSF(SOLAT)
    FTASUN=SINF(GOLAT)
    WF NOW HAVE COORDINATES OF SUBSOLAR POINT.
    WRITEOUTPUTTAPE6,505,IH,IM,SEC,XISUN,ETASUN,XI, ETA,IHAH,IHAM,HAS,
XIDFG,INM,DFCGEC
    FORMAT
        11HO/1H415\times24HCOORDINAT
        XES AT MID-SCAN,213,F5.1,5H U.T./1HO5N32HSURSOLAR POINT CENTER O
```



```
        XHH M S6X8HO - --/2X,2(F10.3,F8.3),3X,2(I5,I3,F5.1))
C
    NOW FIND H.A. AND DEC. PREDICTION LAWS.
        ERAGE DHDT, DODT
        FREQUENCY 10O6(0,1,10)
1006 IF(NOBS-1)507,550,510
C 550iC PROCFSS BLOCK.
508 FORMAT (3GHODATA ERRCR -- NO FILMS BEFORE SCAN.)
    GO TO 3
C NORMALIZF VARIABLFS.
510 DO 511 I=1,NOBS
    T(I)=TIME(I)-TMEAN
    H(I)=HAT(I)-HATMEN
    D(I)=TOPDEC(I)-DTMFAN
            WITH MEANS REMOVED, LINEAR FCNS. MUST PASS THROUGH (0,0).
        SEF WHFTHER FITTING MCDE IS SPECIFIED ON - S/D - CARD BEFORE DATA.
            CARD MUST HAVF, RFGINNING ON OR AFTFR COL. 7 ....
                    SCAN -- FOR MOVING TELESCOPF.
                    ORIFT -- FOR TELESCOPE FIXED.
    IF NEITHER IC SPECIFIED, PROGRAM WILL MAKE UP ITS OWN MIND.
    IF(CODF-5HNRIFT) 530,515,530
    DIMENSION RFJ(90)
        530 IS LINFAR FIT, 515 IS FIXED FIT.
C
```

```
    NO 5al I=1,NORS
    TCQ=TSO+T(1)**2
    TH=TH+T(I)*H(I)
521 Tn=TD+T(1)*#(1)
    DHOT=TH/TSQ
    DDDT=TD/TSQ
    DO 532 I=1,N\capBS
C RFIUCF H ANN D TO RFSIDUALS.
    H(I)=H(I)-DHDT*T(I)
532 D(I)=D(1)-DDDT*T(I)
C GO LOOK FOR BAD DATA.
515 FRASF SUM,VAR
    TOL=23.5F-1n
r TOL = (10 ARCSFC) SQUARED.
    DO 516 I= - NOBS
    H(I)=H(I)*COCF(TOPNFC(I))
C CONVERT RFSIDUALS TO ARC SECONDS.
    RFJ(I)=H(I)**2+D(I)**2
    IF(REJ(I)-TOL)517.517.516
517 VAR=VAR+REJ(I)
C POINT IS ACCFPTED.
    ERASE REJ(I)
516 SUM=SUM+REJ(I)
    FREQUENCY 10OB(0.20.1)
1008 IF(SUM)3,518,519
C
C RFJECTION HERE.
E1O FRACF TNL
    DO 520 I=1,NOBS
    IF(TOL-REJ(I))521.520.520
521 TOL=REJ(I)
    LOP=I
520 CONTINUE
C LOP IS NON INDEX OF WORST POINT.
    H(LOP)=H(LOD)*PARSEC
    D(LOP)=D(LOP)*PARSFC
C CONVERT OFEENNFRC TO SECONDS. GRITEOUTPUTTAPEG.522,FRAME(LOP),H(LOD),D(LOP),CODE
C TONVERT OFEENNFRC TO SECONDS. .HRITEOUTPUTTAPEG.522,FRAME(LOP),H(LOD),D(LOP),CODE
522 FORMATII3HORFJECT FRAMFF5.0.6X22HERRORS IN H.A. AND DEC/30X2F8.1,
    X&XGHARTSECGXAG)
        DO 5?3 I=LOP,NOBS
        TIMF(I)=TIME(I+I)
        XIORS(I)=XIORS(I+1)
        ETAOBS(I)=FTAOBS(I+1)
        TOPDEC(I)=TOPDEC(I+1)
        HAT(1)=HAT(1+1)
    527 FRAME(I)=FRAME(I+1)
        NORS=NORS-1
        Gn Tn 540
    518 IF(nHDT**2+ODDT**2)1501,1500.1501
    1501 HRATE=DHDT*RALPH/86400.
    DRATF=ÑOT#FSRSEC/86400.
    WRITEOUTPUTTAPE6,1502,HRATE,DRATE
1502 FORMAT (26HOMOTION PFR SECOND OF TIME 19XF7.3.2H SF13.3.7H ARCLECI
1500 STAR=SQRTF(VAR/OBSNO)*PARSEC
    SINNEL=SINF(DTMEAN)
    COSDEL=COSF(DTMEAN)
```

```
        COSTT=&INDFL*SINPHI+COSDEL*COSPHI*CCSF(HATMEN)
        REFR=DNMI/(COSDFL*COSTT)
        RFFPH=-RFFR*CINF(HATMEN)*COSPHI*RALPH
        RFFRN=RFFR*(CINDHT-COSZT*SINDEL)*PARCEC
        WRITFO!ITP!ITTAPFG,5%4,RFFRH,RFFRD,STAR,CODF
524 FORMATI 36HODIFFERFNTIAL RFFRACTION CORRFCTIONS5X2F13.1/
    X 28HOR.M.S. RFSIDUAL TN POSITIONF5.2,13H ARCSFC FROMA AG/2!1H
    XO/1,51HORFGIDUALS IN H.A. (H) AND DFC (D) ARF ON NEXT PAGE)
526 TEDGE=.005*(T(NORS)-T)
        XLO=T-TEDCF
        XHI=T(NOBS)+TFDGE
C NOW CHFCK FOR NEGLIGIRLE RATES.
550 IF(CODF-6H 1560.551,560
551 IF(NOB<-2)55?,552,553
C FORCF DRIFT-CIJVFF FIT FOR TWO OR FFWER POINTS.
552 CONF=5HDRIFT
    Gn TO 540
    FREQUENCY 552(1,0,2n)
553 IF(\capHDT**2+ח\cap\capT**)-VAR/(IOBSNO-1.)*TSQ))552,552,555
C NON PROCEFD TO GFNFRATF FPHFMERIS.
555 CODF=4HSCAN
560 WRITEOUTPUITTAPE6,561,NSCAN,CODE,NOBS
661 FORMAT(19HOEPHEMERIS FOR SCANI4,15H THEN WILL USE AG,15HMETHOD BAS
        XFD ONI2,9H DOINTS.I
        CALL LIMITC(XLO,XHI,SECTM,SECTP)
        OO 525 I=1,N\capDC
        CALL DOINTC(T(I),H(I),17)
525 CALL POINTS(T(I),D(I),13)
        CALL GRID(T,T(NORS)-T,SECTM,SECTP)
        CALL GRAPH(SCALE)
C
C-************************************************************************
C NOW RFAD DATA AND GENERATE EPHEMERIS.
```



```
C
        ERACF kNUNT
        FREOUFNCV lOIN(l,ln,?)
1010 TF(TRACFR)8nn,550,80n
C GIMILLATF CARNS VIA TRACE OPERATIONS.
80n SPIMON=47434.89/PARCEC
C MFAN MOTION OF MOON, RADIANS PER DAY.
    HRATF=OHDT-(TNODI-CPUMON*.916/(COSF(\capTMFAN))**2)
C LAST TFRM IS SINERFAL MOTION IN R.A.
    DRATE=ARSF(D\capDT)-ARSF(SPUMON*SINF(ABSF(DTMEAN)-.410))
C ADOPT SLOWFST REACONARLE RATE.
C HRATE AND DRATF ARF NOW MOTIONS OF TELESCOPE RELATIVE TO MOON.
    SPFFN=CQRTF(HRATF**2+DRATF**2)
    UT=11T-.011/CDFFN
C LINAR NIAMFTFR NFVFR EXCEEDS.Oll RADIAN.
C THIIC,RACK IIP AT LFAGT ONE DIAMNETER TO GTART TRACE.
QO5 UT=UT+GTFP
C- STED IS INCRFMFNT FOR TRACF PROCEDUTF.
001 JDAY=|T
    NHOUR=MONF(|T, l.)*)4.
    NMIN=M\capDF(リT*)4..l:)*60.
    SFC=MONF(UT*1440.,1.)*60.
```

```
        HAG\capAY = JDAY
C SET IIP FOR SINNFY.
    WRITEOUTPIITTAPEG,BRI,NSCAN,CODE,NORS,YEARA,XMON
    RG1 FORMAT (2OHITRACF RACFD ON SCANI4,8H, USING AG, 15HMFTHOD RASED CNIS
        X,9H POTNTC./14O.I 4,3X,A6,4HU.T. 22X3HAIR5X36HELEVATION OF FARTH
        XAZIMUTH PHASEIT4XGOHXI ETA EAPTH SASS FUN ERO
        XM SIIN ANGLF/IGH D H M S)
        TITLE HEANINT FOR TRACE MOOD NOW DONE
        G? TO =70
        TRACE ROUTINF SKIPE READ SECTION.
    562 |IT=ПAY +TSFC/86400.
570 ET=|!T+NELTAT/8640n.
    T\triangleNRLF=6.2831853*MONF(UT.1.)
    AG=TABLE(ALPHA,TSIJRR,ET,NSUBB)
    DG=TARLE(DFLTA,TSURR,ET,NSURR)
    SIANG=CINF(NC)
    COCNG=COSF(NG)
    HOT=TANGL5*I.OO273791-WLONG-AG
    JDAY=UT
    HAG\capAY = JDAY
    HAG=SITNEY(YFAR, XMON,HAGDAY) +HOT
    SINHAG = SINF (HAG)
    COSHAG=COSF(HAG)
    COSZG=SINDG*SINPHI +COSDG*COSPHI*COSHAG
    SINZG=SQRTF(1.-COSZG**2)
    PIG=TARLE(PIF,TSUBA,ET,NSUBA)
    CDTC=STNE(DIC)
    CIGMA=PIG*CINZG*(1.+.0168*(OOSZG)
    SINO=SINHAG*COSPHI/CINZG
    COSO=(CINPHI-COCZG*CINDG)/(COSDG*SINZG)
    O=\triangleDTNF(CINO,C\capSQ)
    SEA=TARLF(C,TSUBC,|IT,NSUBC)
    OMC=Q-SFA
    GEG=TARLE(RE,TSUBC,!IT,NSUBC)
    DL = -SIGMA*SINF(GMC)/COSF(BEG)
    TOPLNG=TABLF(EL,TSURC,UT,NSUBC)+DL
    TOPR=RFG+SIGMA*COSF(QMC)
    CL=COSF(TOPLNG)
    SL=CINF(TOPLNGG)
    CR=TOSF(TOPR)
    SR=CINF(TOPR)
    TODC=SFA+DL*CR-SIGMA*SINQ*SINDG/COSDG
    AX=rOG\capG*CINHAG
    RX=COSDG*COSHAG-RHOCOS*SPIG
    CX=CINDG-QHOSIN*SPIG
    \capX=4x**2+RX**2
    FX=SQRTF(DX+rX**2)
    SX=CQRTF(DX)
    HTOD=ARTNF (AX,BX)
    DFCTOD = ATANF (CX/SX)
C TODOCENTRIC LIBRATIONS AND POSITION ARE NOW KNOWN.
    T=1リT-TMFAN
    HA=HAT*FN+חUOTT*T
    DFC= DTMFAN+MNDT*T
C NOW HAVE TOPOCENTRIC HA AND DEC OF SCAN POINT FOR GIVEN TIME.
    DA=HTOP-HA
C DA IS RA OF POINT MINUS RA OF LUNAR CENTER.
    R=2.670*FX/SPIG
```

```
    CDFC=COSF(DFR)
    GIGX=STNF(DA)*CDFC
    QIGV=STNF(DEC)
    RIC?=COSF(NA)*CNFC
C NOW HAVE DIRTCTION COSINFS RFL. TO LINAR MFRIDIAN AND CEL. FQUATOP.
    CN=rx/FX
    rn=Cx/Ex
    YP=口!%X
    YP=RIGY*CN-R!GZ*Sn
    7P=RIGY*<n+RIGZ*Cn
C NOW HAVE Z-AXIS ROTATED TO LUNAR CFNTER.
C NOW SFT 7D=R.
    ZID=R/7P
    XD=XP*7IP
    YP=YP*TIP
C. TP=R, RUT CARRY MFNTALLY.
    C\capCr=C\capCF(TMDC)
    <INr=GTNF(TOFC)
    Enrer=1H
    X=YO*STNK-XP*COCC
    Y=XP*STNC+YP*COCC
    Z=R-7P=0.
        INE NOW HAVF AXES IN MOON, DIRECTED TO LUNAR POLE.
        NOU CORRECT DISTANCE TO POINT.
        RIM=X*X+Y*Y
        RSO=R*R
        RAT=RIM/RGQ
        RAn=(RAT+1.-RTM)/RCN
        FRFO!IFNCY 1n12(1,0,?0)
101> TF/PACIF64,555,565
    564 EDFE=3HOFF
1012 IF(TRACFR)810.565,810
C NO CORRFCTION IF NOT CN MOON.
910 IF(KOUNT)3,805,560
C TRY NEXT DOINT ON TRACE IF OFF MOON, UNLESS DONE.
C CORPECTION IG DIFFFRENTIAL BECAUSE R=200.
5b6 OFLTA=RAT+CORTF(RAN)
    WO|ND=?.-DFITA
    x=x*wOUND
    y=v*NOIND
    ?=O*\capCLTTA
    CL\capD=X*X+Y*V+Z*7-1.
    FRFOUFMCY 1\cap14(1\capn,0,1)
1014 IF(ARSF(SLOP)-2.E-4)565,567,56?
567 SLOD=SOPTF(1.+SLOP)-1.
    WRITEOITPUUTTAPEG,568,NDAY,NHOUR,NMIN,SEC.SLOP
568 FORMAT(I3,2I4,F7.2.4X3OHPOINT MISSES LUNAR SURFACE SY E9.2)
    KOUNT = KOUNT +1
    FRFOUENCY 1015(1,10,1)
1015 IF(TRACER)805,591,805
EK5 CLOn=Z*CR-Y*CR
    xI=x*CL+CL.On*C!.
    FTA=Y* ノR+7*<员
    フFTA=CLOD*CL-X*GL
    PREPARE FOR OIITPIIT.
    COৎTT=CINF(DFC)*CINDHI +COSF(DEC)*COSDHI*COSF(HA)
    AIR=1./COSTT
    AIR=AIR*(1.*.0012*(AIR*AIR-1.))
```

```
        FRFOUFNCY1nIS(1,2n,n)
R1016 IFIEDGF/60606060606n)575,580,575
575 FRACF ALTORS,ALTSOL,ATOUT,PHASF
        GOTO 5On
C NO FIIRTHFR RESIILTC IF OFF MOON.
580 SNL\capNG=PIHLF-TARLF(TOLONG,TSUBC.UT,NGURC)
        SOLAT=TABLF(CLAT,TSUBC,UT,NGUBC)
        COSOL=COSF(SOLAT)
        COSLNG=COSF(SOLONG)
        XISIIN=SINF(SOLONGI*COSOL
        ETASUN=SINF(COLAT)
        2ETASN=COSLNG*COSOL
        COST=XI*XISIJN+ETA*FTASUN+ZETA*ZETASN
        cose=cosz
        SINS=CORTF(1.-COくS**2)
        ALTSOL=DEGRAN*(PIHLF-ACOSF(COSZ))
C ALTCOL IS SOLAR ALTITUDE IN DEGREES.
C NOW FOR OBSERVFR-E COORDINATFS FROM POINT ON MOON.
        X\cap口C=-X
        YORC=-Y
        ZORS=R-2
C NOW CONVERT TO DIRECTION COSINES.
        CLON=ZOBS*CB-YOBS*SQ
        XIO=XORS*CL+CLOD*SL
        ETAO=YOBS*CB+ZOBS*SB
        ZETAO=-XOBS*SL+CLOD*CL
        NOQMALIZF.
        CLON=SQRTF(*IO**IO+ETAO*ETAO+ZETAO*ZFTAO)
        XIO=XIC/CLON
        FTAO=FTAO/CLOn
        ZFTAO=ZFTAO/RLON
        COCZ=XI*XIO+FTA*ETAO+ZETA*ZETAO
        COSF=COSZ
        SINE=SORTF(1.-COSF**2)
        ALTOBS=DEGRAD*(PIHLF-ACOSF(COSZ))
C ALTOBS IS ALTITUDE OF OBSERVER IN DEGREES.
        COSES=XIO*XISUN+ETAO*ETASUN+ZETAO*ZETASN
        PHASF=ACOSF(TOSES)*DEGRAD
        AZOITT=ACOSF((COSEC-COSS*COSE)/(SINS*SINE))*DEGRAD
    r
    590 TOATTMMIE
    595 IF(TRACFR)59?,591,592
    592 WRITE CUTPUT TADEG,590,JDAY,NHOUR,NMIN,SEC,XI,ETA,AIR,ALTOBS.
        XALTSOL,AZOUT,PHASE,EDGE
    599 FORMAT (13,214.F7.2,F9.3,F8.3.F9.3,2F8.1,F11.1,F13.1,2XA6)
        GO TO 805
C
    569 ERASE NOBS
        591 RETIIRN
C TO RFAD NEXT DATUM.
C
ENO
```

```
* l.icte
* Laral
* gyMaCl tarle
CCOFFI?
C SUBROUTINF TO COMPUTF. COEFFICIENTS OF YBAR
C COFFI2 IS SIIPFRVISFD RY MAIN PROGRAM LUNAR
C COEFI2 GFNERATES THF BASE LEVELS FOP TEMPR?
C SURROUTINF COEFI2 INTAP,IPT,NPB,NPZ,DAY,TSFC,KEY,EDGE,DATUM,KD,
    Y(CON,NGCAN)
    COMMON RIICK,TERO,RSCON,NSB,NSZ,YI1,U1,C,CT,TI,GN,NK,ALAMB,ELEMNT,
        1C1,C2,C2,PLAN,NH?O,CAUSE,COEF,AVOIDC,IMAX,PRINEX,FIT,LAMEND
            DIMENCION QUIFK(つO),TFRO(20),NSB(20),NSZ(20)
            DIMENSION \vee11(20n),1!1(200),C(200)
            IIMENSTON CT(20),TI(20,20),GN(20,20),NK(20)
            DIMENSION ALAMR(200), FLENNT(200),C1(200),C2(200),C3(200)
            DIMENGICN TGFCI(120),Y1(120),TSEC2(120),Y2(120)
            IF(KFY-2) 504,601,601
        601 IF(CSW) 6n3,673,6n?
    < O2 r<w=1.
C. TTT=TIMF BETWFFN OFF READING AND EDGE OF THE MOON FOR WHICH THE
C.VALIE OF Y OOFG NOT ENTER THF CALCULATIONS OF THE COLFFICIENTS.
        TTT=2.
        REWTNN NTAD
    FRAGF ACW,RCW,T,J,MP, AT I,ATZ,AY1,AYZ.NSCT
C DFTRRMINF IF THIS IS A NEN SCAN AND SELECT THE VALUSS
C OF ZUCKING SIGNAL AND ZERO SUPPRESSION
    60? 1TT=OAY+TSEC/864nO.
        IF(NSTAN-NSCT)1037,1040,1037
    1037 ERASE RS,?S
C TFGT FOR RUCKING GIGNAL
    DO 103n IR=1,NDR
    IF (NSCAN-NSR(IR)I1O30,1031.1030
    Inan CONTINIF
            GO TN ? O32
    1021 RC= ロ|\K(IR)
C TFET FOR ZFRN SIIDDRFCSION
    1033 no , n3) 1Z=1,NPZ
            IF (NSCAN-NSZ(IL))1032.1034.1032
    1O32 CONTINUE
            60 TO 1035
    1034 ZS=7ER\cap(IZ)
    1035 C C=0.25
    1.039 NGCT=NCCAN
    104n DATIMM=(DATUM-ZS)*(G-BS*BSCON/GT(UT,IPI)
C CG TRANSFORMG Y-DFFLECTION IN COUNTS TO MILLIMETERS
r NOWTEGT OFFION MOON CONDITION
- IF(FOGF/GOSOGO6OGOGO)l,2,1
        l IF(\DeltaSW)401,]\capT,40?
    C START WITH FIRST OFF LIMB GROUIP. I IS THE COUNT
        101 I= I+1
C
            TSECl(I)=TSFC
            Y1(I)=DATUM
            GO TO 900
C
    ? IF(FSW)501,3,501
        3 IF(mac)>01,201,90n
```

```
<
    GFNFRATE U11 AND Y1 OF LEFT SKY LEVFL
    201 FTI=TSFC
C
    202 IF (TSECI(I)-(ET1-TTT)) 204.204.203
    203 I= I-1
        GO TO 202
    204 DO 205 IA=1,1
        ATl=AT1+TSECI(IA)*Y1(IA)
    205 AY1=AY1+Y!(TA)
        Kn=KD+1
        UI(KD)=ATI/AYY
        ZI=I
        Y11(kn)=\DeltaY1/71
        \DeltaSW=1.
        MC=1
        ERASF NE
        GO TO 900
C NOW WITH SECOND OFF LAME GROUP, J IS THE COUNT
    401 IF(NC) 403,402,403
    402 ET2=TSFC+TTT
        NC=1
    403 IF(TSEC-ET2)900,404,404
    404 J=J+1
        TSFCZ(J)=TSER
        Y?(J)=nAT!M
        R.SW=1
        IF(J-1) 900,900,405
    4 0 5 ~ G A P = T S F C 2 ( J ) - T S E C 2 ( J - 1 ) ~
        IF(GAP-1800.1 900,406,406
    406 J=J-1
        GO TC 504
    NON GENERATF U2 AND Y2 OF RIGHT SKY LEVEL
    501 5T3=TSFC
    502 IF (TSFC2(J)-(ET3-TTT))504,504,503
    502.}\textrm{J}=\textrm{J-1
    GO TO En?
    5n4 On 5n5 JA=1,J
        AT2=AT?+TCFC?(JA)*Y?(JA)
    505 AY?=AYZ+YZ(JA)
        U2=AT2/AY2
        ZJ=J
        V2=AYZ/ZJ
C C=SLOPF BETWFEN LEFT AND RIGHT SKY-LEVEL DEFLECTIONS
C C IG IN COUNT PER SFCOND
    C(KD)=(Y2-Y11(KD))/(U2-U1(KD))
C NOW FOR THF NEXT SLOPE
    IF(GAP-1800.)506,507,507
    5n5 KD=KD+?
    11(KD)=U2
        Y11(KD)=Y2
        ERASE RSW,\,AT2:AYZ:NC
        RETIIRN
C
    507 I=1
        TSEC1(1)=TSEC
        Y1(1)= NATUM
```

> FRAGF $A G W, R C W, M C, J, A T 1, A Y 1, \Delta T 2, A Y 2, C, A P, N C$ OOOT
> FNN

* LISTR
* Larfl
* symaol tablf
CTAIMC
C GIRROUTINE TO COMDIITF GAIN COEFFICIFNTS
GURROITINE FAIN(IPI)
COMMON BUCK, ZERO,RSCON,NSR,NCZ,Y11,'11,C,CT,TI,GN,NK,ALAMB,ELEMNT,
1C1, C2, C3,PLAN,WH2O,CAUSE,COEF,AVOIDC,IMAX,PRINEX,FIT,LAMEND
DIMFNSION RUCK(20),7FRO(20),NSB(20), NSZ(20)
DIMFNSION Y $11(200), 111(200), C(200)$
DIMENSION TI(20,20),GN(20, 20),NK(20),CT(20)
DIMFNSION ALAMB(200), ELEMNT(200), C1 (200), C? (200), C3(200)
C CT=ARRAY OF TIMES AT WHICH MANUAL TIME CHANGE WAS MADE
ERACE CTII)
$J=1$
SG4
FINALI $=6 \mathrm{HFINALI}$
CHANGF = GHCHANGF
SG6
FRACF T,NK,IDT SG7
$4 \mathrm{I}=\mathrm{I}+1$
5 RFAN INPUT TAPF 5,5n, CARD, NDAY,NHOUR,NMIN,SEC,GA
5010
50 FORMAT (AG,313,F6.2,F10.4) SGII
HOID=NHOUR 5613
DAY=NDAY SG12
$A M I N=N M I N$
SG14
$U T=$ ПAY $+($ HOUR/24.) $+($ AMIN/1440.) $+($ SEC/86400.) SG15
IF (FINALI/CARD)6,10.6
a
a 6 IF(CHANGE/CARD)7,9.7
SG1?
C GN=ARRAY OF GAIN VALUES
7 CN(I,J)=GA
$\begin{array}{ll}\text { GN }(1, J)=G A & \text { SG18 } \\ T I(T, J)=11 T & \text { SG19 }\end{array}$
$\begin{array}{ll}\text { NK }(J)=N K(J)+! \\ \text { Gn } T \text { ? } 4 & \text { SGF }\end{array}$
Gn Tn 4
CG2n
$9 J=J+1 \quad$ SG21
ERACE I,NK(J)
$\mathrm{I}=\mathrm{I}+1$
SG23
C IPI=NUMBFR OF CHANGE CARDS
$\begin{array}{ll}I P 1=I P 1+1 & 5624 \\ N K(1)=N K(1)+1\end{array}$
$\begin{array}{ll}I P 1=I P 1+1 & 5624 \\ \text { NK } & 5625\end{array}$
NK(J)=NK(J)+1 SG25
TI(T,J)=UT SG26
CT(J)=UT SE27
GN(T,J)=GA SG28
GO TO 4 SG29
10 RETIRN SG30
ENO SG31

```
* LIST8
* lagel
CFAKIR
SURROUTINE FAKIR(RAD,CST,TO,NTEM)
C SUPROUTINES INCLUDFO ARE RREW,ANDY,ICE,HIPLOT,FRENCH,ERR1G9,ISIMEQ
C REVISER 3/1\cap/E5 TO DO PARABOLIC FIT TO TRANSMISSION LAW
COMMON RUCK,ZERO,RCCON,NSR,NGZ,Y1I,UI,C,CT,TI,GN,NK,ALAMS,ELEINT,
    ICI,C2,C3,PLAN,WH2O,CAUSE,COFF,AVOIOC,IMAX,PRINEX,FIT,LAMEND
        OIMENCION RUCK(ON),7=RO(20),NSR(2O),NS7(2n),Y11(200),U1(200)
    DIMENCION C(Onn),CT(2n),TI(2n,2n),ON(2n,20),NK(20)
    DIMENCION ALAMZ(2ON), ELEMNT(200),Cl(200),C2(200),C3(200)
    DIMFNFION ALAMMA(2חn),TAL(2nn), SEZ(1n),FLAM(200),F(200)
    DIMFNSION ICFCT(5), S(50,10),ARG(200),TEM(50)
    DIMFNSION PTOAN(50.10)
    DIMENSION XT(20),
    PARAM(3,50), POWER(5,50),AMAT(5,5),X2(20)
    DIMFNSION RAN(34n),CST(3,34O)
    PLANCKF(A,T)=1.19\capS4EIO/(A**5*(EXPF(1.43879E+4/(A*T))-1.))
C CONTROL CARD, WH2O IN MM. OF WATER, PLAN TELLS WHAT MODEL TO
C CHCOSE FIT=DIC OR LIN FOR INTEGRATION, NGRAPH=I IF WANT NO GRAPHS
C. WHGATF = MM. OF H2O THAT GATES HAD
    QS=(+4HCKIP)
    QL=(+3HLIV)
    FLONT=?.302585
1 RFAD INPUT TAPE 5, ?,NH2O,WHGATE,PLAN,FIT,SKIP
    2 FOR"AT (2F5,2,A5,A3,55X,A4)
    ERAGE PRINEX
E CONTINUOUS ABS. PARAMETER, IGNORE ONLY IF AVOIDC=NOT,
C IF NATER IS THE CULPRIT PUT CAUSE=H
lO READ IMPUI TAPE 5,11,CAUSE,COEF,AVOIDC
11 FORMAT(Al,FG.5,67X,A3)
    ,IRITF OITPUT TAPE 6,4,NH2O,PLAN,CAUSE,COEF,AVOIDC,FIT,WHGATE
4 FORNAT II&HIARS. PROGRAN FOR ,F5.2,19HMM. OF WATER USING AS,SH MOD
    IEL/R4HOCONTINIOUS ARS. DUSE TO AI,12H WITH COFF. =F6.4.5H WILL,A3,8
    24 DF |GFD/5HOFIT=,\Delta2/1OHOWHGATE = F5.21
    IF(CKIP/QS) 13,101,18
    INPIIT OF BAND ARSORBTION CARDS. UP TO 2כ0 ALLONED, BLANKS=-0.
    ELEMENT BY FIRST LETTER, ADD 1. TO COEFICIENT PREFERRED
    DO 29 I=1,200
    READ INPIJT TAPE 5,21,ALAMB(I),ELEMNT(I),C1(I),C2(I),C3(I),JEND
    FORMAT (F6.3,1X,A1,2X,3F10.5,39X,I1)
    1F(JこNS) 29,29.19
    IMAX=I
        GO TO 22
        CONTINIE
        WRITF OUTPUT TAPE 6,23,(ALAMB(I),ELEMNT(I),C1(I),C2(I),C3(1),I=1,I
        IMAXI
        FORMAT ( IHO, 39X, 2THBAND ABSORBTION COEFICIENTS/2OHOWAVELENGTHIMIC
        1RONSIEX,11HCONSTITUENT,5X,13HSTRONG RANDOM, 2X,11HWEAK RANDOM,4X,14
        2HSTRONG RFGIJLAR /1H,39X,12H(PER MM.1/2),4X,SHIPER MM.),7X,1OH(PER
        * ATM.)/1H/(1H,F!2.3,15X,A!,F22.7.F14.7,F16.7))
    C RFANINFILTFR TRANSMISSICN DATA
        N1=1
    ?0 N2=N1+2
        REAN INPUT TAPE 5,31,(ALAMDA(I),TAU(I),I=N1,N2)
    2) FORMAT(GF10.5)
    C TFCT FOR END JF DATA ELANK FIELD = -0.
C IF(MLAMDA(N2)/4nOnOOOnOOOO) 36,40.36
    O5 Nl=N!+?
```

```
    gn TC 20
C N2 IS NUMRFF OF DATA ITEMS
40 V2=N2-1
= IF(ALAMDA(N2)/400nOOOOOOO0) 101,40,101
C REAN IN VALUES OF TEMPERATURE AND ZENITH ANGLES (IN UNITS OF SECZ)
    101 SEZ(1)=1.0
        SEZ(2)=1.5
        CEZ(3)=2.n
        <E?(4)=2.5
        C57(5)=3.0
        CE7(6)=4.0
    104 vZ=6
        MLO=1
        MHI=10
100 READ INPUT TAPE 5,106.(TEM(M),M=MLO,MHI)
106 FORMAT(IOG)
        IF(TEM(MHI)) 107.107.108
108 MLO=NLO+10
    *HI=M4!+10
    50 TO 109
OO7 MHT=MHT-1
    IF(TEM(MHI)) 107.107.112
112 VTENP=ANHI
C GET RSOIANCFG ADJUSTED TO INDEX1
    IDX=(TFM(1)-TO+.1)
    DO ROO IQ=IDX,NTEM
    I 8 = I 9 +1-1D X
    800 RAD(I8)=RAD(19)
        NTEM=NTEM-IDX+1
        TO=TEM(i)-1.0
        DO 199 IZ=1,NZ
        SFC7=5FZ(IZ)
        CALL RREW(ALAMDA,TAU,NZ,SECZ,WHGATE,FLAM,F)
        L\triangleMFND=L\triangleMENS
        Dつ 19B IT=1,NTFMP
        T=MD=TFM(IT)
        STFPSZ=1.
        DC 110 LAM=2,LAMEND
110 STEPSZ=MIN1F(STEPSZ,FLAM(LAM)-FLAM(LAM-1))
        FLAMAX=FLAM(LAMEND)
        |AVE=FLAM(1)
        SDOT=F(1)*PLANCKF(WAVE,TEMP)
        N=1
        KK=1
        LAM=1
        FRACF ARFA
145 CALL ICE(STEPSZ,WAVE,FLAMAX,5.E-6,.0\capO1,N,AREA,SDOT,ICEST,JJ)
146 GO TO (147,148,171,141),JJ
148 JJ=XICFF(A)
    Gの TO 146
P 147 IF!FIT/QL) 127,126,127
127 IF(LAM-LAMEND) 120,122,122
120 IF{WAVF=0.5*(FLAM(LAM)+FLAM(LAM+1))! 122,123.123
123 LANA=LAN+1
122 SDOT=F(LAM)*PLANCKF(WAVE,TEMP)
    SO TO 148
126 IF(LAM-LAMENN+1) 124,128,128
124 IF(WAVE-FLAM(LAM+1)) 128,129,129
```

```
120 LAM=LAM+1
128 SDOT =(F(LAM)+(F(LAM+1)-F(LAM))*(WAVE-FLAM(LAM))/(FLAM(LAM+1)-FLAM(
    1LAM)))*PLANCKF(WAVF,TEMP)
    GO TO 148
141 WRITE OUTPUT TAPE 6,25U,LAM,WAVE,SDOT,STEPSZ,SECZ,TEMP,KK
250 FORMAT (15HONONCONVERGENCF/1HO,13,5F16.5,16)
171 &(IT,IZ)=ART\Delta
    IT=(TEMP-TO+.1)
IOR CTRAN(IT,IZ)=S(IT,IT)/PAD(I7)
OOQ -ONTINIF
C NON SOLVE FOR BFGT PARABOLIC FIT TO A,S,K
EO? FRACE & X,CX),CX3, <X4
    DO 51\cap IZ=1,NZ
    xT(IZ)=LOG1\capF(SFZ(IZ))
    x2(IZ)=xT(17)**2
    Sx= ¢ X + XT(IIZ)
    5x2= 5x2+\times2(IZ)
    sx3=s\times3+\times2(IZ)*xT(17)
510 S < 4 = 5<4+X2(1Z)**2
    m
    FRAGF &Y,GXY,&XXY
    O\cap 5\cap1 1Z=1,N%
    YT=LOG1OF(-LOGIOF(PTRAN(IT,IZ)))
    SY=SY+VT
    SXY=SXY+XT(IZ)*YT
501 SXXY=5XXY+X2(IZ)*YT
    \triangleM\DeltaT(1,1)=N7
    AMAT (1,2)=5X
    MNAT(1,3)=SX?
    AMAT(1,4)=SY
    AMAT (2,1)=SX
    \triangleM\DeltaT(2,2)= SX (
    AMAT (2,3)= CX2
    AM\DeltaT(2,4)=CXY
    AM\DeltaT (3,1)=5X?
    AM\DeltaT(2,2)= CX2
    AMAT(3,3)=5X4
    AMAT (3,4)=SXXY
    CALL ISIVEQ(AMAT,5,?,1)
C PARAMETERS ARE A,B,K IN ORDER 1,2,3
    PARAM(3,IT)=FXPF(ELOGT*AMAT(1,4))*ELOGT
    PARAM(:,IT)=AMAT(3,4)
    PARAM(?,IT)=AMAT(2,4)
    D) 530 K=1,5
    AK=r
    530 POWFR(K,IT)=PARAM(I,IT)*LOGIOF(AK)+PARAM(2,K)
5ON CONTINUE
        URITF OUTP!!T TAPE 6,351,(TEM(IT),(PARAM(J,IT),J=1,3),(POWER(K,IT),
    1K=1,51,IT=1,NTF(AP)
351 FORMAT (1H1, 5OX,-ABSORPTION LAW COEFICIENTS- /-OT(ABSOLUTE- ,
    18X,?HA,!2X,1HP,12X,1HK,8X, -POWER(1)-,5X,-POWER(2)-,5X, -POWER(
    23:-,5x, -PONFR(4)-,5X,-POWER(5)-1 (F9.3,4X,3E13.5,F10.5,4F13.6))
    WFITE OUTPUT TAPE 6,352
252 FOR*AT (14T/-OTRANSMISSION = EXPF(-K*SEC(Z)**POWER)- /-OPOWER = A
    z*LOGlOE(SFr(Z)) + R-)
        NO=?
        D) 920 J=1,?
        r=1
```

```
        TFNOO=Tn
        nO 920 I=1,NTFM
        TFMP=TFMD+1.O
RO7 IF(TFMP-TFM(K))808.909.810
ROS K=k+1
    60 TO 807
QOQ <<T(J,I)=PARAM(J,K)
    GO TO 920
810 FF(TFNP-TFM(K+1))311,R12.813
811 CST(J,I)=(PARAM(J,K+1)-PARAM(J,K))*(TEMP-TFM(K))/(TEM(K+1)-TEM(K))
1+PARAM(J,:<)
    GO TO 820
81? k=k+1
    rn TO 909
813 K=K+1
    GO TO 810
82C CONTINUF
R=TIRN
    EN?
```

```
* LIcts
* lagFl
CLAGR
C FUNCTION SURPROGRAN: TO COMPUTE GAIN
    FUNCTIONGT(IIT,IPI)
    COMMON BUCK,ZERO,BSCON,NSB,NSZ,Y1I,UI,C,CT,TI,GN,NK,ALAMB,ELEMNT,
    1-1,C2,C3,PLAN,WH2O,CAUSE,COEF,AVOIDC,IMAX,PRINEX,FIT,LAMEND
    CIMFNSION ALAMB(200),ELEMNT(200),C1(200),C2(200),C3(200)
        DIMFNSION BUCK(20),ZERO(20),NSB(20),NSZ(20),Y11(200),U1(200)
        DIMENSION NK(20),TI(20,20),GN(20, 20),CT(20),C(200)
        FG2
        DOO! KJ=1,ID1 FG3
        J=< J-1
        IF :19-CT(!)J)93,0?,01
        FG6
        Q1 COMTINIIF FOG FG7
        9) J=J+l
        O N =NK(J)
        ERAGE GT
        DO 96 L=1,N
        POL=1.0
        FGIO
        FGll
        nO 95 M=1,N
        IF (L-M)94,95,94
        94 POL=POL*(UT-TI(M,J))/(TI(L,J)-TI(M,J))
        FG13
        FO14
```



```
        95 CONTINUE
        FG15
        96GT=FT+GN(L,J)*POL
        FG16
        RFTIIRN
        FGl7
        5N
        FGl8
```

```
* LICT8
* LARFl
CBREW COMPUTES AND MULTIPLIES TOGETHER ATMOSPHERIC TRANSMISSIONS
    S!IQROUTINF FRFW(ALAMDA,TAU,N2,SECZ,WHGATE,FLAM,F)
C REVISEN 3/5/65 TO INCLUDE ERROR FUNCTION TO APPROX CO2 DATA
C SURROUTINE ANDY IG CALLED TWICE
    COMMON DUCK,ZERO, ASCON,NSB,NSZ,YII,UI,C,CT,TI,GN,NK,ALAMB,ELEMNT,
    IC1,C2, C3,PLAN,WH2O,CAUSE,COFF,AVOIDC,IMAX,PRINEX,FIT,LAMEND
        OIMENGION RUCK(20),ZFRO(20),NSB(20),NSZ(20),Y11(200),U1(200)
        OIMFNSICN C(>00),CT(20),TI(20,20),GN(20,20),NK(20)
        OIMFNSION F(?OC), FLAM(200),ALAMS(200), ELEMNT(200)
        OIMENSION Cl(200),C?(200),C3(200),ALAMDA(200),TAU(200)
        \becauseULTIPLICATION OF =ILTER,CONTINUOUS,AND BAND ABSORBTIONS
        ACCORDING TO SETTING OF PLAN, EXTRADOLATION ACCORDING TO EXTRAP,
        COMTINIVIC ABSORBTION ACCORDING TO AVOIDC
        IF(PRINFX) 2,Z,\delta
        EXTGAPCLATION IN ATM. DATA CARD, EXTRAPOLATE TO ENDEXT OR WHEN
        CODEXT=EQUAL TC NEXT SET OF DATA WITH LESS TRANSMISSION
        UO EXTRAPOLATION UHEN EXTRAP=NO, DATA AFTER EXTRAP. ASSUMED
        RFAD INPUT TAPE 5,l, BFGEXT,CODEXT,FNDEXT,RPFXT,EPEXT,EXTRAF
        FOR*AT (2OX,F1O.5,A5,5X,3F10.5,3X,A2)
        P々INEX=1.
        ?Mn=(+74MO)
        OEQ=(+5HEOUAL)
        ZNOT = (+3HNOT)
        2H=(+1HH)
        OS=(+5HSTRAN)
        QW=(+5HWKRAN)
        QE=1+5HELSAS)
        QG=(+5HGATES)
        OD=1+5HDFVFL)
        OGR=(+4HGRFV)
        OC=(+1HC)
        \partialn=(+1HO)
        2N=(+1HN)
        IFIEXTPAP/QNOI 3,B,2
        WRITE OUTPUT TAPE 6,4,BEGEXT,CODEXT,ENDEXT,BPEXT,EPEXT
        FORMAT (35HIAN EXTRAPOLATION WILL BE MADE FROM,F7.3,4H TO A5,F7.3/
    125H USING COMPUTED DATA FRON:F7.3,2HTO,F7.31
    PINTER=FPEXT-GPEXT
    ERACE NFL,F,FLAM,FEXTR
    VLAM=1
    GQSECZ=CQOTE(SFCZ)
    COCTM= CQRTF(CFCZ*WH?O)
    SQSZCW=SQRTF(CECZ*WHGATE)
    WSFCZ=14H20*5FCZ
    GMGECZ=WHGATF*SECT
    IF(CODFXT/OFO) 6,5,5
    ENDX=15.
    (G) T0 9
    ENDX=ENDEXT
    9 IF(AVOIDC/ONOT) 67.69.67
69 TCONT=1.
    GO TO 7
    67 IF(rAU&F/OH) 74,73,74
73 TCONT=FXPF(-COEF*VSECZ)
    G\cap T\cap 7
74 TCONT=FXPF(-rOFF*CFCZ)
```

```
7 WRITE OUTPUT TAPE G,IgO,SECZ,TCONT
1SO FORMAT(1OHOSFC(Z) =,F6.3/21HOCONTINUOUS TRANS. = ,F6.4)
    DC 1O LAM=1,200
C KLAM IS IND. VARIABLE FOR BANI ABS. COEFICIENTS
C LAM IS IND. VARIARLF FOR PRODUCT ABS.
C WHICH REGION EXTRAPOLATION, PREPARING, OR OTHER
a IF(FXTRAP/ONO) 20,11,20
O IF(\triangleLAMR(KLAM)-RESFXT) 11,21,21
?1 IF(ALAMR(KLAV)-EN\capX) ?2,!1.11
C IN EXTRAPOLATICN R=GION
22 FLAM(L\triangleM) =FLAM(LAM-1) +0.05
    F(LAM) =FEXTR
    IF(FLAM(LAM)-ALAMB(IMAX)) 24,121,121
C. nOFG NATA FXIST
24 IF(ALAMB(KLAM)-FLAM(LAM)) 25,25,10
C NOW PAST A DATA POINT
    25 IF(CODEXT/QEQ) 23,26,23
26 LOCK=1
    GO TO 1^
2? 
    GO TO 10
11 L\cap\capK=0
C WHICH PLAN TO RF USFO
Q 13 IF(PLAN/QS) 14,15,14
15 X=C1(KLAM)
    NX=?
    GO TO 40
R 14 IF(PLAN/QW) 16,17,16
17 X=C2(KLAM)
    NX=?
    GO TO 41)
- 16 IF(DLAN/NE) 18,19,18
19 X=C3(KLAM)
    NX=?
    GO TO 40
R 18 IF(PLAN/QG) 36,30,36
30 1F(M1(KL\DeltaM)-1.) 31,21,15
31 IF(C2(KLAM)-1.) 33,33,17
33 IF(C3(KLAM)-1.) 199,199,19
\square. 26 IF(PLAN/QD) 38,37,38
\square 38 IF(PLAN/QGR) 198,30,198
R 37 IF(FLFMNT(KLAM)/QH) 19,39,19
29 IF(Cl(KLAN)-1.) 41,41,15
41 IF(C2(KLAM)-1.) 197,197,17
40 IF(x) 51,51,70
C SFARCH FOR ANOTHER COEFICIENT
51 IF (NX-?) 52,58,54
52 IF(C2(KLAM)-1.) 54,54,53
E? }\quadX=C)(KLAM
    NX=2
    GO T0 70
    IF(C3(KLAM)-1.) 196,196,55
    54
    NX=3
    GO TO 70
58 IF(C3(KLAM)-1.) 59.59.55
=9 IF(r)(KLAN)-1.) 106,196,62
6? }\quad\textrm{X}=\Gamma!(KL\DeltaM
```

```
    NX=1
    GO TO 70
64 IF(Cl(KLAM)-1.) 65.65.62
65 IF(C2(KLAM)-1.) 196,196,53
C PRODUCT OF CONTINUOUS AND BAND ABSORBTION PLACED IN F
70 IF(x-1.) 71.71.72
72 X=X-1.
71 IF(NX-2) 76,77.78
- 76 IF(PLAN/QGR) 300.301,300
n 301 IF(FLEMNT(KLAM)/QH) 302,300.302
202 F(LAM)=TCONT*EXPF(-X*SQSZGW)
    GO TO RO
300 F(LAM)=TCONT*EXPF(-X*SQSZW)
    GO TO 80
R 77 IF(PLAN/QGR) 310.311.310
R 311 IF(ELEMNT(KL\triangleM)/QH) 312,310,312
312 F(LAM)=TCONT*EXPF (-X*GWSECZ)
    GO TO 80
310 F(LAM)=TCONT*EXPF(-X*WSECZ)
    G\cap TO RO
78 ERARG=X*SQSFCZ
        F(LAM)=TCONT*(1.0-ERR169(ERARG))
        IF(F(LAM)) 79,90,80
        F(LAM)=0.
    80 [F(LOOK) 110.110.81
C CHECK IF CAN NOW END THE EXTRAPOLATION, YES IF TPANS BY DATA LESS
81 IF(FEXTR-F(LAN)) 83,82,82
82 ENDX=FLAN(LAM)
C USE TRANS. AT DATA POINT HAVE JUST PASSED
    GO TO 110
83 F(LAM)=FEXTR
    KLAM=KLAM +1
    GO TO 10
110 FLAM(LAM)=ALAMP(KLAM)
= IF(EXTRAP/QNO) 111.115.111
111 IF(FLAM(LAM)-BPEXT) 115,112,112
112 I =(FLAM(LAM)-EPEXT) 120.115.115
C IN DREDARING REGION
120 DLAM=0.5*(ALAMB(KLAM+1)-ALAMB(KLAM-1))
    FEXTR=F(LAM)*DLAM/FINTER+FEXTR
115 KLAM=KLAN+1
    IF(FLAM(LAM)-ALAMB(IMAX)) 10,121,121
    L\triangle:MFND=LA:%
    GO TO 210
199 WRITE OUTPUT TAPE 6,200,ALAME(KLAM), ELEMNT(KLAM),C1(KLAM),C2(KLAM)
    I-C2(KLAM)
    FORMAT(23HONO PREFERENCE IN GATES/1HO,5F12.4)
        CALL =XIT
198 WRITE OUTPUT TADE 6,201,PLAN
201 FORMAT (2GHOI KNOW OF NO PLAN CALLED ,A6)
    CALL EXIT
197 WRITE OUTPUT TAPE 6,202,ALAMB(KLAM),ELEMNT(KLAM),CI(KLAM),C2(1,LAM)
    1,C3(KLAM)
202 FORMAT (35HONO PREFERENCE GIVEN FOR WATER ABS./1HO,5F12.4)
    CALL EXIT
196 WIRITE OUTPUT TAPE 6,203,PLAN,ALAMB(KLAM),ELEMNT(KLAM),CI(KLAM),C21
    1KLAN),(3(KLAM)
203 FORMAT(17HOFIRST OPTION IN, 46,30H NOT ALLOWED AND NO PREFERENCE/1
```

```
        1H0,5F12.4)
        CALL FXIT
10 CONTINUF
    WRITE NUTP!IT TAPE 6,204
204 FORMAT(13HOBREW IS FULL)
    CALL FXIT
C SFCOND TIMF THROUFH
210 DO 220 LAM=1,LAMEND
    ALAN=FL AM(LAM)
220 F(LAM)=F(LAM)*FRENCH(ALAM,ALAMDA,TAU,N2)
    RFTIIRN
    END
```

```
CROAD2
CR RLACKROOY RADIANCE FOR LUNAR THERMAL SCANNINGS
DIMENSION ICFST(5), ALAMDA(400),TAU(400), SOUT(9000)
C IMPROVED VALUES OF RADIATION CONSTS. TO PLANCK FUNCTION.
            PLANCKF(ALAM,TEMP)=1.19064E10/(ALAM**5*(EXPF(1.43879E+4/(ALAM*
        1TEMP/|-1.|)
C FSTTMP ,FINTMP ARE FIRST AND LAST VALUES OF TEMPERATURE 008
        K=0
999 READ INPUT TAPE 5,5,STEPSZ,FSTTMP,FINTMP
    5 FORMAT(3F10.2)
                    N1=1
                011
        10 N2=N1+2 012
        REAN INPUT TAPE 5,15,(ALAMDA(I),TAU(1),I=N1,N2)}01
        15 FORMAT(GF10.5) 014
C TFST FOR END OF DATA** BLANK FIELD=-0 015
R IF(ALAMDA(N2)/400000000000)16,20,16 016
        16 N!1=N1+3 017
        GO TO 10 018
C N2 IS NUMRER OF DATA ITEMS
        019
    20 NZ=N\2-1 020
Q IF(ALAMDA(N2)/400000000000)22,20,22
021
22 ERASE RADSW
    DO 10OO I=2,N2
    STEPCZ=MINIF(CTEPCZ,ALAMDA(I)-ALAMDA(I-1))
    IF(AL\triangleMDA(I)-ALAMDA(I-1))1001,1000,1\cap00
10\sigma1 RANCW=?.
    URITEOUTPUTTAPE6,1002,ALAMDA(I),ALAMDA(I-1)
1002 FORMAT (184ODATA OI!T OF ORDER F10.5,8H FOLLOWS F10.5)
1000 CONTINUE
            TEMP=FSTTMP-1. 040
C VALUE OF INTEGRAL PRINTED AT UPPER LIMIT 082
    IF(RADSW)300,300,999
        300 TPRNTS=ALAMDA(N2) 083
            N=1 051
C INITIAL CONDITIONS FOR INTEGRATION 054
        201 ALAM=ALAM\capA(1)
        055
            TEMP=TEMP+1. 056
            TAUl=TAU(1) 057
C INITIALIZE S TO O BEFORE NEXT INTEGRAL EVALUATED 088
                        S=0 089
        ANLAM=PLANCKF(ALAM,TEMP)
            SDOT=ANLAM*TAUI
                0 6 0
        50 CALL ICE(STEPSZ,ALAM,TPRNTS,5,E-6,.0001,N,S,SDOT,ICEST,JJ) 
C INTERPOLATION ROUTINE 067
211 SDOT = PLANCKF(ALAM,TEMP)
    IF(SDOT)206,52,52
206 ERASE SDOT
    GO TO 52
400 K=K+1
    SOUT(K)=S
    IF(K-36)432,430,430
430 WRITE OUTPUT TAPE 7,443,(SOUT(I),I=1,K)
443 FORMAT (6E13.6)
    K=0
432 IF(TEMP-FINTMP) 201.431,431
```

500 URITE OUTPUT TAPES,505,TEMP 188505 FORMAT(1HI,4OHTHE INTEGRAL DOES NOT CONVERGE FOR TEMP=,F4.0) 187
431 CALL EXIT
END191

```
# In FAO
    ENTRY READR
    FNTRY WRITR
*UNITS LIMITED TO B-CHANNEL
*CALLING SEQUENCE TO READR IS
* (ALL READR(BUFR,EOF,ERR,NTP)
*WHERE BUFR IS OUTPUT ARRAY NAME
*EOF IS END OF FILE SIGNAL NEGATIVE WHEN EOF READ
*ERR IS hOPELESS TAPE SIGNAL NEGATIVE WHEN TAPE HOPELESS
*WHERE NTP IS THE B-CHANNEL TAPE USED-- FORTRAN2 INTEGER
    UNIT MACRO
                CLA* 4.4
        CLA S(IOU)
        STA *+1
        CLA **,7
        ADD =020
        PAC 0,7
    UNIT END
    RFADR LMTM
        UNIT (GET TAPE-UNIT CHANNEL B)
        STZ* 3,4 (CLEAR HOPELESS TAPE SWITCH)
        5T7* 2.4 (CLEAR END OF FILE SWITCH)
        CLA =3n (NUMBER TRYS BAD READ)
        STO ERCT (ADDRESS TOP OF BUFFER)
        SUB WRDS (SIZE OF BUFFER -1)
        STA INPT (BOTTOM OF BUFFER)
        RDS 0,7 (READ TAPE)
        RCHB INPT
        TCOB *
        TRCB ERR
        TFFR OUT
        TRA 4,4
        SCM
        STO* 2,4
        TRA 4.4 (RETURN WITH EOF=NEGATIVE)
        BSR 0,7 (BACK OVER BAD RECORD)
        CLA ERCT
        SUR =1
        STO ERCT
        TPL Rl (GO TRY AGAIN)
        STO* 3.4 (RETURN WITH ERR=NEGATIVE)
        TRA 4.4 (INPUT TAPE HOPELESS)
    INPT IORT **,,1995 (CHANNEL COMMAND)
    FRCT OCT O
    WRDS DEC 1994
* CAlLING SEQUENCE TO WRITR IS
* CALL WRITR(RUF,IBAD,TAPND,NTP)
*WHERE BUJF IS INPUT ARRAY NAME
*IBAD IS A COUNTER OF NUMBER BLANK RECORDS WRITTEN
*TAPND IS RETURNED NEGATIVE WHEN END OF TAPE IS
*PREMATURELY REACHED
*WHERE NTP IS THE B-CHANNEL TAPE USED-- FORTRAN2 INTEGER
*UNITS LIMITED TO B-CHANNEL
*
*
```

, /R I TR	LMTM		
	CLA	1,4	(BUFFER ADDRESS)
	SUR	WRDS	
	STA	OTPT	
*			
*			
*			
*			
WI	WRS	0,7	(WRITE TAPE)
	RCHB	OTPT	
	TCOB	*	
	ETTB		(TEST FOR END OF TAPE)
	TRA	TEND	(TAPE END TEST SET)
W2	TRCB	WER	(BAD WRITE TEST)
	CLA	GDR	(GOOD RECORD COUNT)
	ADO	$=1$	
	Sto	GDR	
	TRA	4,4	(NORMAL RETURN)
WER	BCR	0,7	(BACK TAPE OVER BAD PECORD)
	CLA	GDR	
	SUR	$=1$	
	Tプ	wh	
	TM T	W3	
	RSR	0,7	(BACK OVER GOOD RECORD)
	RDC	0,7	(DUMMY-READ GOOD RECORD)
	RCHR	DIJMM	
	TrOR	*	
W3	STz.	GDR	(RESET GOOD RECORD COUNT)
	WRS	0,7	
	WRS	0,7	(BLANK 19 INCHES BAD TAPE)
	CLA*	2,4	
	ADO	= 01000000	
	STO*	2,4	(BLANKED RECORD COUNT)
	TRA	W1	
TEND	SSM		
	STO*	3,4	(SIGNAL TAPE PREMATURELY ENDED)
	TRA	W2	
DUMM	IORTN	0,,2000	(DUMMY READ COMMAND)
OTPT	IORT	**, 1995	(OUTPUT COMMAND)
GDR	OCT	0	
	END		
	END		

```
* LIST8
* LARFL
SYMBOL TABLE
CRODY
C SUBROUTINE COPY TO TRASFER DATA FROM TAPE FILE TO NEW TAPE BEFORE
C ADDING ON NEW DATA- HENCE AVAID LOSING ORIGINAL DATA
    SUBROUTINE COPY (BUFR,LBUFR,IBAD,NRL,NTP1,NTP2)
    DIMENSION BUFR(15,133),LBUFR(15,133)
    6 0 ~ E R A S E ~ L S C A N , K T , N T
C KT IS NO. OF RECORDS PER SCAN AND NT IS NO. OF RECORDS COPIED
    61 CALL READR (BUFR,EOF,ER1,NTP1)
C BUFR IS OUTPUT ARRAY NAME AND HAS 1995 STORAGE SPACES
C EOF IS END OF FILE SIGNAL. NEGATIVE WHEN SIGNAL ENCOUNTERED.
C ERI IS HOPELESS TAPE SIGNAL. NEGATIVE WHEN TAPE IS HOPELESS.
    IF (EOF) 62.63.63
    6 2 ~ R E T U R N
    63 IF (ER1) 64,66,66
    64 WRITF OUTPUT TAPE6,65,LBUFR(15,133),LBUFR(14,133)
    65 FORMAT I GHISCAN NO..I4,4HWITH.I4.8BBHDATA FOINTS HAVE BEEN TRANSF
        IERED COPY STOPPED BECAUSE IT COULD NOT READ THE NEXT RECORD ,
        CALL EXIT
    66 CALL WRITR (BUFR,IBAD.TAPND,NTP2)
C IBAD IS A COUNTER OF NO.BLANK RECORDS WRITTEN
C TAPND MEANS END OF RECORD PREMATURELY REACHED
C SET UT COUNTER FOR BACK SPACE PURPOSE
    IF(LSCAN-LBUFR(15.133)) 67.68.67
    67 LSCAN=LBUFR(15,133)
        KT=1
        GO TO 69
    68KT=KT+1
    69NT=NT+1
        IF(TAPND) 70,73,73
    73 NRL=NRL-IBAD
        IF (NRL)70,61,61
C NEGATIVE TAPND MEANS END OF TAPE PREMATURELY REACHED
    70 DO 71 1=1.KT
    BACKSPACE NTFI
    7 1 ~ B A C K S P A C E ~ N T P 2
        NT=NT-KT
        END FILE NTP2
        CALL UNLOAD (NTP2)
        WRITE OUTPUT TAPE6.72. LBUFR(15.133)
    72 FORMAT (17HIDATA OF SCAN NO.:I4.31H AND THEREAFTER ARE ON NEW TAPE)
        NTP2 =19
        NRL=NRL+NT
        GO TO 60
        END
```


NOTATIONS AND UNITS

```
        A(T) = parameter of the atmospheric model computed by FAKIR
            A
            B(T) = parameter of the atmospheric model computed by FAKIR
            C(T) = parameter of the atmospheric model computed by FAKIR
            c = constant of the bucking signal counter
            c = velocity of light in vacuum, 2,997,929 x 10 10 cm s
            dc}=\mathrm{ total deflection of the recording pen due to the
                calibration signal, mm
            dm}= observed deflection of the recording pen, m
            d(t) = total deflection of the recording pen, mm
            F
        Feff = effective f-number of the optical system during
                measurements
            h = Planck's constant, 6.6252 x 10 -34 W secc
            I = radiant power on the detector, W
            j = index at integral values of brightness temperature in
                CORRADIANCE Tables
            j = index of data points
            j = index air mass at points selected for least square fit
            K(t) = constant of the pyrometer, W mm
                            K(t. ) = constants of the pyrometer at calibration time t }\mp@subsup{|}{i}{\prime
                        W mm
            k = Boltzmann's constant, 1.38042 x 10-23 W sec o}\mp@subsup{\textrm{K}}{}{-1
            m}=\mathrm{ air mass at a given data point (along the line of
                    sight)
                            m}=\mathrm{ air mass at points selected for the least squares
                            m
            N = zero-suppression given in counter reading
            N(\lambda,T) = spectral blackbody radiance, W cm
N[\lambda,T}\mp@subsup{C}{C}{(t
                    W cm
N[\lambda,T}\mp@subsup{T}{R}{}(\mp@subsup{t}{C}{})]=\mathrm{ spectral radiance of the reference blackbody,
            W cm
            n = bucking signal given in counter reading
            q = pen center deflection, mm
```

```
            R
            operation, cm}\mp@subsup{}{}{2}\textrm{sr
    R
    S(T) = blackbody radiance corrected for instrumental trans-
            mittance (CORRADIANCE), W cm
S[T(\xi,\eta)] = CORRADIANCE at specific orthographic coordinates,
                W cm
            T
            T
            Tj = a particular integral value of T, '0}
            T
T
                    time tc' ' K
    T(t) = brightness temperature, '}\mp@subsup{}{}{\circ}\textrm{K
            T
T(\xi,\eta) = brightness temperature, '}\mp@subsup{}{}{\circ}\textrm{K
    \DeltaT(T) = temperature resolution of the pyrometer, 生K
                t = time, sec
            tc
            ti
            \mp@subsup{\overline{t}}{\ell}{\prime}}=\mathrm{ time at which }\mp@subsup{\overline{Y}}{\ell}{}\mathrm{ is measured, sec
            E}\mp@subsup{\overline{r}}{}{\prime}=\mathrm{ time at which }\mp@subsup{\overline{Y}}{r}{}\mathrm{ is measured, sec
                x = time given in digitized counts from an arbitrary origin
    yb
            yi}= infrared measurement at a specific time with respect to
                    an arbitrary level and given in digitized counts
            \mp@subsup{y}{\ell}{\prime}}=\mathrm{ average sky infrared measurement to the left of the
                    lunar disk, given in digitized counts
            \mp@subsup{y}{r}{}}=\mathrm{ average sky infrared measurement to the right of the
                                    lunar disk, given in digitized counts
            y(t) = digitized lunar infrared measurement
                                    Y(t_c})=\mathrm{ infrared measurement at a calibration, in digitized
                    counts
            z = zenith angle, deg
            \varepsilonc
            \mp@subsup{\varepsilon}{R}{}}=\mathrm{ radiant emissivity of the reference blackbody
```

```
            n = lunar horizontal orthographic coordinate
            \eta}=\mathrm{ horizontal orthographic coordinate of the barycenter
                of the resolution element
                    n}n= specific value of lunar horizontal orthographi
                    coordinate
                n(t) = horizontal orthographic coordinate of a measured lunar
                    region as a function of time
                    \lambda = wavelength, }
            \xi = lunar vertical orthographic coordinate
            \xi}=\mathrm{ vertical orthographic coordinate of the barycenter of
                the resolution element
                            \mp@subsup{\xi}{n}{}}=\mathrm{ specific value of lunar vertical orthographic
                    coorainate
            \xi(t) = vertical orthographic coordinate of a measured lunar
                region as a function of time
                    \rho
                    telescope
                            T}\mp@subsup{A}{A}{(m}\mp@subsup{m}{j}{\prime}\lambda)= spectral atmospheric radiant transmittance
\tau
    \mp@subsup{\overline{\tau}}{A}{}(\mp@subsup{m}{j}{},\mp@subsup{T}{i}{}})=\mp@code{mean atmospheric radiant transmittance for a given \mp@subsup{\omega}{0}{}
            t}d(\lambda)= spectral radiant transmittance of the window of the
                    detector
            \tau
            t
                    \omega = amount of precipitable water along the path
                    \mp@subsup{\omega}{0}{}}=\mathrm{ amount of precipitable water for one air mass
```


REFERENCES

1. H. C. Ingrao and D. H. Menzel, "Radiation Pyrometer for Lunar Observation." Harvard College Observatory Scientific Report No. 4, NASA Research Grant No. NsG 64-60, 1964.
2. H. C. Ingrao, A. T. Young and J. L. Iinsky; "A Critical Analysis of Lunar Temperature Measurements in the Infrared." Harvard College Observatory Scientific Report No. 6, NASA Research Grant No. NsG 64-60, 1965.
3. A. T. Young, "Lunar Coordinate Program, MOON2." Harvard College * Observatory Infrared Laboratory Internal Report, December 1964.

[^0]: *Harvard College Observatory
 **At present, Astronomy Department, University of Texas
 ***Harvard Computing Center
 +At present, Smithsonian Astrophysical Observatory

[^1]: *G. Hass, "Mirror Coatings," Chapter 8, Applied Optics and Optical Engineering, edited by R. Kingslake (New York, Academic Press, 1965), Vol. III, p. 316.

[^2]: *Hereafter referred to as CORRADIANCE.

[^3]: *For the analytical description, see Reference 2 .

[^4]: *FAP subroutines READR and WRITR perform the large-block inputoutput with error checking.

[^5]: *Spectral transmittance as defined in Reference 1.

[^6]: *A name for the model that determines the use of the coefficients coming from the experimental data being used. This name should always appear starting in Column 11.

