3 research outputs found

    Geochemical fingerprints of seawater in the Late Mesoproterozoic Midcontinent Rift, North America : life at the marine-land divide

    Get PDF
    The 1.1 Ga Midcontinent Rift (MCR) is a thick volcanic-sedimentary succession that forms a curvilinear belt through central North America and crops out along its northern apex around Lake Superior. Sedimentary units of the MCR have been long interpreted as fluvial-lacustrine and invited a number of studies on the early evolution of life in non-marine habitats. One of the key units is the siliciclastic Nonesuch Formation, thought to record deposition in a large lake. However, recent sedimentological observations indicate the presence of marine incursions. To further test this interpretation, we analysed trace element abundances in a broad suite of samples from multiple drill cores through the Nonesuch Formation. We aimed to differentiate geochemical influences of sediment provenance from post-depositional hydrothermal overprint and thereby identify authigenic enrichments in fluid-mobile elements that are indicators of primary environmental conditions. Our results reveal discrete enrichments in Mo and U in organic- and sulphide-rich horizons, which are most parsimoniously interpreted as marine signatures. This conclusion is supported by Sr/Ba ratios, which suggest mixing between freshwater and saltwater, and by rare cm-thick gypsum in the upper Copper Harbor Formation immediately below the Nonesuch rocks. The gypsum displays δ34S values of +25.9 ± 0.6‰, consistent with input of marine sulphate at least during parts of the basin's history. Collectively, our geochemical data support the sedimentological interpretation that this portion of the MCR archives a marine-influenced estuarine system. Although this conclusion rules out that microbial life documented from the MCR was living in exclusively freshwater habitats, the Nonesuch Fm and associated rocks still hold important clues about organisms that were capable of withstanding salinity gradients and bridging the gap between the marine and non-marine environments of the mid-Proterozoic.PostprintPeer reviewe

    Experimental assessment of elemental analyzer isotope ratio mass spectrometry normalization methodologies for environmental stable isotopes

    No full text
    •Rationale: In stable isotope mass spectrometry, isotope delta values are normalized to internationally recognized reference scales using a combination of certified and in-house isotope reference materials. Numerous techniques exist for performing this normalization, but these methodologies need to be experimentally assessed to compare their effect on reproducibility of isotope results. •Methods: We tested normalization methods by the number of reference materials used, their matrix, their isotope range, and whether normalization required extrapolating beyond the isotope range. We analyzed eight commercially available isotope reference materials on a ThermoFinnigan Delta-V isotope ratio mass spectrometer (IRMS) and an Elementar VisION IRMS for nitrogen and carbon isotope composition via solid combustion with an elemental analyzer and computed every possible isotope normalization (n = 612). Additionally, we assessed how sample matrix affected linearity effects on both instruments using five in-house reference materials. •Results: Normalizations exhibited the best performance when the reference materials spanning an isotope range of at least 20‰ were matrix matched with the samples and did not require extrapolation beyond the calibration curve. When these conditions were not met, the number of reference materials used had a significant effect on accuracy, with normalizations composed of two reference materials exhibiting particularly inconsistent performance at isotope ranges below 20‰. Linearity effects were found to exceed instrument precision by two orders of magnitude irrespective of matrix type and were not predicted by working gas diagnostics. •Conclusions: Interlaboratory comparability of isotope results is improved when operators of elemental analyzer isotope ratio mass spectrometry (EAIRMS) systems select reference materials spanning an isotope range of at least 20‰. Additionally, using three or more isotopic reference materials, avoiding extrapolation beyond the range of the normalization curve, and matching the matrix of the reference materials to the samples improve normalizations
    corecore