443 research outputs found

    Recent Development in IR Sensor Technology for Monitoring Subsea Methane Discharge

    Get PDF
    Recently developed methane sensors, based on infrared (IR) absorption technology, were successfully utilized for subsea methane release measurements. Long-term investigation of methane emissions (fluid flux determination) from natural methane seeps in the Hikurangi Margin offshore New Zealand were performed by using seafloor lander technology. Small centimeter-sized seep areas could be sampled at the seafloor by video-guided lander deployment. In situ sensor measurements of dissolved methane in seawater could be correlated with methane concentrations measured in discrete water samples after lander recovery. High backscatter flares determined by lander-based Acoustic Doppler Current Profiler (ADCP) measurement indicate bubble release from the seafloor. Highest methane concentrations determined by the IR sensor coincided with periods of high ADCP backscatter signals. The high fluid release cannot be correlated with tidal changes only. However, this correlation is possible with variability in spatial bubble release, sudden outbursts, and tidal changes in more quiescent seepage phases. A recently developed IR sensor (2,000 m depth-rated) with a detection limit for methane of about 1 ppm showed good linearity in the tested concentration range and an acceptable equilibration time of 10 min. The sensor was successfully operated offshore Santa Barbara by a small work-class ROV at a natural methane seep (Farrar Seep). High background methane concentration of 50 nmol L−1 was observed in the coastal water, which increases up to 560 nmol L−1 in dissolved methane plumes south of the seepage area. ROV- and lander-based sensor deployments have proven the applicability of IR sensor technology for the determination of subsea methane release rates and plume distribution. The wide concentration range, low detection limit, and its robust detection unit enable this technology for both subsea leak detection and oceanographic trace gas investigations

    Residential energy consumption in Orange County, NC: assessing the impacts of local efficiency programs

    Get PDF
    Potential improvements to the energy efficiency of residential buildings present planners and policymakers a number of options for effecting local changes in energy consumption patterns. The possibility of increasing energy efficiency in the US building stock has been explored over the past several decades; however, the geographic scope is often too coarse to account for unique local variables. This paper builds upon past analyses of the relationship between housing characteristics and residential energy consumption to better understand the energy savings potential of local efficiency programs in Orange County, NC. Two energy models for residential consumption were constructed using Residential Energy Consumption Survey variables that were also available in a county parcel dataset. Three policy interventions were simulated for both heating and cooling energy consumption: (1) weatherization, (2) reflective roofing, and (3) tree shading. Overall, if applied uniformly for the entire county, the policies demonstrate potential to save 29, 13 and 19 percent of current heating and cooling energy use, respectively. All three interventions prove most effective for low income households, as well as older (pre-1980) as opposed to newer (1980-present) structures. Weatherization improvements demonstrate the highest heating energy savings potentials for the above variables at 45 percent and 51 percent, respectively. Whereas high income households save 14 percent and new structures see 12 percent savings. Cooling energy policy simulations show a more limited range of energy use reduction (10-23 percent), with low income households and older structures still receiving the highest savings. Resulting savings are comparable to the national, regional, and statewide estimates that appear throughout the literature. Savings estimates provide local policymakers an indication of the effectiveness of potential energy efficiency programs.Master of City and Regional Plannin

    Shape of Evasive Prey Can Be an Important Cue That Triggers Learning in Avian Predators

    Get PDF
    Advertising escape ability could reduce predatory attacks. However, the effectiveness of certain phenotypic cues (e.g., color, shape, and size) in signaling evasiveness is still unknown. Understanding the role of such signals in driving predator learning is important to infer the evolutionary mechanisms leading to convergent evasiveness signals among prey species (i.e., evasive mimicry). We aim to understand the role of the color pattern (white patches on dark background) and morphology (extended butterfly hindwings) in driving learning and avoidance of escaping prey by surrogate avian predators, the European blue tit. These cues are common in butterflies and have been suspected to advertise escape ability in nature. We use dummy butterflies harboring shape and color patterns commonly found in skippers (family Hesperiidae). The prey models displayed the studied phenotypical cues (hindwing tails and white bands) in factorial combinations, and we tested whether those cues were learned as evasive signals and were generalised to different phenotypes. Our results suggest that hindwing tails and white bands can be associated with prey evasiveness. In addition, wild blue tits might learn and avoid attacking prey models bearing the studied phenotypic cues. Although blue tits seem to have an initial preference for the phenotype consisting of white patches and hindwing tails, the probability of attacking it was substantially reduced once the cues were associated with escaping ability. This suggests that the same morphological cues might be interchangeable as preference/avoidance signals. Further investigation of the salience of hindwing tails vs. white bands as cues for escaping ability, revealed that predators can associate both color pattern and shape to the difficulty of capture, and possibly generalize their aversion to other prey harboring those cues. More studies with larger sample sizes are needed to confirm this trend. Altogether, our results highlight the hitherto overlooked role of shape (butterfly hindwing tails) for signaling prey unprofitability.Peer reviewe

    Methane seepage along the Hikurangi Margin of New Zealand : geochemical and physical data from the water column, sea surface and atmosphere

    Get PDF
    The concentration and carbon isotope values of dissolved methane were measured in the water column at Rock Garden, Omakere Ridge and Wairarapa areas in the first dedicated cold seep investigation along the Hikurangi Margin of New Zealand. These measurements provide a high resolution impression of the methane distribution in the water column and show that these seep sites are actively venting methane with varying intensity. The highest concentrations (up to 3500 nM) measured in water samples obtained from Conductivity–Temperature–Depth (CTD) operations were at Faure Site of Rock Garden. Here, seafloor bubble release was observed by ROV. The Omakere Ridge area is actively venting over almost its entire length (not, vert, similar 25 km), in particular at Bear's Paw, a newly discovered seep site. In the Wairarapa area another new seep site called Tui was discovered, where methane measurements often exceeded 500 nM. No evidence was obtained from water column or sea surface measurements along the Hikurangi Margin to indicate that methane from seeps is reaching the sea surface. In fact, a consistent upper boundary was observed at a density of 26.85 kg/m3, which occurs at about 500 m below sea surface, above which methane decreased to background concentrations. No obvious oceanographic feature is associated with this 500 m CH4 boundary. Bubble dissolution calculations show that about 500 m was also the model-derived maximum bubble rise height. A wide range of δ13CCH4 values from − 71 to − 19‰ (VPDB) were measured, with the highest CH4 concentrations having the lowest δ13CCH4 values of about − 71 to − 68‰. Simple mixing and isotope fractionation calculations show that changes of δ13CCH4 values are predominantly caused by the dilution of seep fluids with the seawater, with some anaerobic oxidation also occurring

    Thermocline mixing and vertical oxygen fluxes in the stratified central North Sea

    Get PDF
    In recent decades, the central North Sea has been experiencing a general trend of decreasing dissolved oxygen (O2) levels during summer. To understand potential causes driving lower O2, we investigated a 3-day period of summertime turbulence and O2 dynamics in the thermocline and bottom boundary layer (BBL). The study focuses on coupling biogeochemical with physical transport processes to identify key drivers of the O2 and organic carbon turnover within the BBL. Combining our flux observations with an analytical process-oriented approach, we resolve drivers that ultimately contribute to determining the BBL O2 levels. We report substantial turbulent O2 fluxes from the thermocline into the otherwise isolated bottom water attributed to the presence of a baroclinic near-inertial wave. This contribution to the local bottom water O2 and carbon budgets has been largely overlooked and is shown to play a role in promoting high carbon turnover in the bottom water while simultaneously maintaining high O2 concentrations. This process may become suppressed with warming climate and stronger stratification, conditions which could promote migrating algal species that potentially shift the O2 production zone higher up within the thermocline

    Can Positioning Systems Replace Timing Gates for Measuring Sprint Time in Ice Hockey?

    Get PDF
    This study explores whether positioning systems are a viable alternative to timing gates when it comes to measuring sprint times in ice hockey. We compared the results of a single-beam timing gate (Brower Timing) with the results of the Iceberg optical positioning system (Optical) and two radio-based positioning systems provided by InMotio (Radio 1) and Kinexon (Radio 2). The testing protocol consisted of two 40 m linear sprints, where we measured sprint times for a 11 m subsection (Linear Sprint 11), and a shuttle run (Shuttle Total), including five 14 m sprints. The exercises were performed by six top-level U19 field players in regular ice hockey equipment on ice. We quantified the difference between measured sprint times e.g., by Mean Absolute Error (MAE) (s) and Intra Class Correlation (ICC). The usefulness of positioning systems was evaluated by using a Coefficient of Usefulness (CU), which was defined as the quotient of the Smallest Worthwhile Change (SWC) divided by the Typical Error (both in s). Results showed that radio-based systems had a higher accuracy compared to the optical system. This concerned Linear Sprint 11 (MAEOptical = 0.16, MAERadio1 = 0.01, MAERadio2 = 0.01, ICCOptical = 0.38, ICCRadio1 = 0.98, ICCRadio2 = 0.99) as well as Shuttle Total (MAEOptical = 0.07, MAERadio1 = 0.02, MAERadio2 = 0.02, ICCOptical = 0.99; ICCRadio1 = 1.0, ICCRadio2 = 1.0). In Shuttle Total, all systems were able to measure a SWC of 0.10 s with a probability of >99% in a single trial (CUOptical = 4.6, CURadio1 = 6.5, CURadio2 = 5.1). In Linear Sprint 11 an SWC of 0.01 s might have been masked or erroneously detected where there were none due to measurement noise (CUOptical = 0.6, CURadio1 = 1.0, CURadio2 = 1.0). Similar results were found for the turning subsection of the shuttle run (CUOptical = 0.6, CURadio1 = 0.5, CURadio2 = 0.5). All systems were able to detect an SWC higher than 0.04 s with a probability of at least 75%. We conclude that the tested positioning systems may in fact offer a workable alternative to timing gates for measuring sprints times in ice hockey over long distances like shuttle runs. Limitations occur when testing changes/differences in performance over very short distances like an 11 m sprint, or when intermediate times are taken immediately after considerable changes of direction or speed

    Discovery of a natural CO2 seep in the German North Sea: implications for shallow dissolved gas and seep detection

    Get PDF
    A natural carbon dioxide (CO2) seep was discovered during an expedition to the southern German North Sea (October 2008). Elevated CO2 levels of ∼10–20 times above background were detected in seawater above a natural salt dome ∼30 km north of the East-Frisian Island Juist. A single elevated value 53 times higher than background was measured, indicating a possible CO2 point source from the seafloor. Measured pH values of around 6.8 support modeled pH values for the observed high CO2 concentration. These results are presented in the context of CO2 seepage detection, in light of proposed subsurface CO2 sequestering and growing concern of ocean acidification. We explore the boundary conditions of CO2 bubble and plume seepage and potential flux paths to the atmosphere. Shallow bubble release experiments conducted in a lake combined with discrete-bubble modeling suggest that shallow CO2 outgassing will be difficult to detect as bubbles dissolve very rapidly (within meters). Bubble-plume modeling further shows that a CO2 plume will lose buoyancy quickly because of rapid bubble dissolution while the newly CO2-enriched water tends to sink toward the seabed. Results suggest that released CO2 will tend to stay near the bottom in shallow systems (<200 m) and will vent to the atmosphere only during deep water convection (water column turnover). While isotope signatures point to a biogenic source, the exact origin is inconclusive because of dilution. This site could serve as a natural laboratory to further study the effects of carbon sequestration below the seafloor

    KiDS+VIKING+GAMA: Halo occupation distributions and correlations of satellite numbers with a new halo model of the galaxy-matter bispectrum for galaxy-galaxy-galaxy lensing

    Full text link
    Halo models and halo occupation distributions (HODs) are important tools to model the galaxy and matter distribution. We present and assess a new method for constraining the parameters of HODs using the gravitational lensing shear around galaxy pairs, galaxy-galaxy-galaxy-lensing (G3L). In contrast to galaxy-galaxy-lensing, G3L is sensitive to correlations between the per-halo numbers of galaxies from different populations. We use G3L to probe these correlations and test the default hypothesis that they are negligible. We derive a halo model for G3L and validate it with realistic mock data from the Millennium Simulation and a semi-analytic galaxy model. Then, we analyse public data from the Kilo-Degree Survey (KiDS), the VISTA Infrared Kilo-Degree Galaxy Survey (VIKING) and data from the Galaxy And Mass Assembly Survey (GAMA) to infer the HODs of galaxies at z<0.5z<0.5 in five different stellar mass bins between 108.5h−2M⊙10^{8.5}h^{-2} M_\odot and 1011.5h−2M⊙10^{11.5}h^{-2} M_\odot and two colours (red and blue), as well as correlations between satellite numbers. The analysis recovers the true HODs in the simulated data within the 68%68\% credibility range. The inferred HODs vary significantly with colour and stellar mass. There is also strong evidence (>3σ>3\sigma) for correlations, increasing with halo mass, between the numbers of red and blue satellites and galaxies with stellar masses below $10^{10} \Msun. Possible causes of these correlations are the selection of similar galaxies in different samples, the survey flux limit, or physical mechanisms like a fixed ratio between the satellite numbers of distinct populations. The decorrelation for halos with smaller masses is probably an effect of shot noise by low-occupancy halos. The inferred HODs can be used to complement galaxy-galaxy-lensing or galaxy clustering HOD studies or as input to cosmological analyses and improved mock galaxy catalogues.Comment: 20 pages + Appendix, 14 Figures. Submitted to Astronomy & Astrophysics. Abstract is abridge

    Simple, robust eddy correlation amplifier for aquatic dissolved oxygen and hydrogen sulfide flux measurements

    Get PDF
    The aquatic application of the eddy correlation (EC) technique is growing more popular and is gradually becoming a standard method for resolving benthic O2 fluxes. By including the effects of the local hydrodynamics, the EC technique provides greater insight into the nature of benthic O2 exchange than traditional methods (i.e., benthic chambers and lander microprofilers). The growing popularity of the EC technique has led to a greater demand for easily accessible and robust EC instrumentation. Currently, the EC instrumentation is limited to two commercially available systems that are still in the development stage. Here, we present a robust, open source EC picoamplifier that is simple in design and can be easily adapted to both new and existing acoustic Doppler velocimeters (ADV). The picoamplifier has a response time of < 0.1 ms and features galvanic isolation that ensures very low noise contamination of the signal. It can be adjusted to accommodate varying ranges of microelectrode sensitivity as well as other types of amperometric microelectrodes. We show that the extracted flux values are not sensitive to reduced microelectrode operational ranges (i.e., lower resolution) and that no signal loss results from using either a 16- or 14-bit analog-to-digital converter. Finally, we demonstrate the capabilities of the picoamplifier with field studies measuring both dissolved O2 and H2S EC fluxes. The picoamplifier presented here consistently acquires high-quality EC data and provides a simple solution for those who wish to obtain EC instrumentation. The schematic of the amplifier’s circuitry is given in the Web Appendix
    • …
    corecore