3,835 research outputs found

    A strong ν¨−ν˙\ddot{\nu} - \dot{\nu} correlation in radio pulsars with implications for torque variations

    Full text link
    We present an analysis of the spin-down parameters for 131 radio pulsars for which ν¨\ddot\nu has been well determined. These pulsars have characteristic ages ranging from 103−10810^{3} - 10^{8} yr and spin periods in the range 0.4--30 s; nearly equal numbers of pulsars have ν¨>0\ddot\nu>0 as ν¨<0\ddot\nu<0. We find a strong correlation of ν¨\ddot\nu with ν˙\dot{\nu}, {\em independent of the sign of} ν¨\ddot\nu. We suggest that this trend can be accounted for by small, stochastic deviations in the spin-down torque that are directly proportional (in magnitude) to the spin-down torque.Comment: MNRAS, 4 pages, 2 figures. Minor editorial changes and typos correcte

    Magnetic excitations in the metallic single-layer Ruthenates Ca(2-x)Sr(x)RuO(4) studied by inelastic neutron scattering

    Get PDF
    By inelastic neutron scattering, we have analyzed the magnetic correlations in the paramagnetic metallic region of the series Ca(2-x)Sr(x)RuO(4), 0.2<=x<=0.62. We find different contributions that correspond to 2D ferromagnetic fluctuations and to fluctuations at incommensurate wave vectors (0.11,0,0), (0.26,0,0) and (0.3,0.3,0). These components constitute the measured response as function of the Sr-concentration x, of the magnetic field and of the temperature. A generic model is applicable to metallic Ca(2-x)Sr(x)RuO(4) close to the Mott transition, in spite of their strongly varying physical properties. The amplitude, characteristic energy and width of the incommensurate components vary only little as function of x, but the ferromagnetic component depends sensitively on concentration, temperature and magnetic field. While ferromagnetic fluctuations are very strong in Ca1.38Sr0.62RuO4 with a low characteristic energy of 0.2 meV at T=1.5 K, they are strongly suppressed in Ca1.8Sr0.2RuO4, but reappear upon the application of a magnetic field and form a magnon mode above the metamagnetic transition. The inelastic neutron scattering results document how the competition between ferromagnetic and incommensurate antiferromagnetic instabilities governs the physics of this system

    Measurements of thermodynamic and transport properties of EuC2_2: a low-temperature analogue of EuO

    Full text link
    EuC2_2 is a ferromagnet with a Curie-temperature of TC≃15 T_C \simeq 15\,K. It is semiconducting with the particularity that the resistivity drops by about 5 orders of magnitude on cooling through TCT_C, which is therefore called a metal-insulator transition. In this paper we study the magnetization, specific heat, thermal expansion, and the resistivity around this ferromagnetic transition on high-quality EuC2_2 samples. At TCT_C we observe well defined anomalies in the specific heat cp(T)c_p(T) and thermal expansion α(T)\alpha(T) data. The magnetic contributions of cp(T)c_p(T) and α(T)\alpha(T) can satisfactorily be described within a mean-field theory, taking into account the magnetization data. In zero magnetic field the magnetic contributions of the specific heat and thermal expansion fulfill a Gr\"uneisen-scaling, which is not preserved in finite fields. From an estimation of the pressure dependence of TCT_C via Ehrenfest's relation, we expect a considerable increase of TCT_C under applied pressure due to a strong spin-lattice coupling. Furthermore the influence of weak off stoichiometries δ\delta in EuC2±δ_{2 \pm \delta} was studied. It is found that δ\delta strongly affects the resistivity, but hardly changes the transition temperature. In all these aspects, the behavior of EuC2_2 strongly resembles that of EuO.Comment: 7 pages, 6 figure

    Assessing and Improving Science Student #SciComm Skills

    Get PDF
    As the population becomes increasingly connected online, there is a growing need for effective science communication on social media platforms (referred to here as #SciComm). We deployed a survey to all FHSU undergraduate and graduate science students to gauge their experiences with #SciComm. Questions included what training students already receive on communicating science to non-scientists and which classes incorporate building these skills. Our survey found that most students have not received any formal training in online science communication. However, many students reported that they wanted more hands-on #SciComm training. Results were used to develop and implement a workshop for FHSU students to provide a primer on #SciComm during the Spring 2023 semester. Ultimately, we hope to encourage more classroom- and workshop-based activities to better prepare the next generation of scientists for science communication in a digital world

    The Effects of Fire on the Function of the 200-BP-1 Engineered Surface Barrier

    Get PDF
    A critical unknown in use of barrier technology for long-term waste isolation is performance after a major disturbance especially when institutional controls are intact, but there are no resources to implement corrective actions. The objective of this study was to quantify the effects of wild fire on alterations the function of an engineered barrier. A controlled burn September 26, 2008 was used to remove all the vegetation from the north side of the barrier. Flame heights exceeded 9 m and temperatures ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above the surface. Post-fire analysis of soil properties show significant decreases in wettability, hydraulic conductivity, air entry pressure, organic matter, and porosity relative to pre-fire conditions whereas dry bulk density increased. Decreases in hydraulic conductivity and wettabilty immediately after the fire are implicated in a surface runoff event that occurred in January 2009, the first in 13 years. There was a significant increase in macro-nutrients, pH, and electrical conductivity. After one year, hydrophobicity has returned to pre-burn levels with only 16% of samples still showing signs of decreased wettability. Over the same period, hydraulic conductivity and air entry pressure returned to pre-burn levels at one third of the locations but remained identical to values recorded immediately after the fire at the other two thirds. Soil nutrients, pH, and electrical conductivity remain elevated after 1 year. Species composition on the burned surface changed markedly from prior years and relative to the unburned surface and two analog sites. An increase in the proportion of annuals and biennials is characteristic of burned surfaces that have become dominated by ruderal species. Greenhouse seedling emergence tests conducted to assess the seed bank of pre- and post-burn soils and of two analog sites at the McGee Ranch show no difference in the number of species emerging from soils collected before and after the fire. However, there were fewer species emerging from the seed bank on the side slopes and more species emerging from two analog sites. Leaf area index measures confirmed the substantial differences in plant communities after fire. Xylem pressure potential were considerably higher on the burned half of the barrier in September 2009 suggesting that not all the water in the soil profile will be removed before the fall rains begin. The results of this study are expected to contribute to a better understanding of barrier performance after major disturbances in a post-institutional control environment. Such an understanding is needed to enhance stakeholder acceptance regarding the long-term efficacy of engineered barriers. This study will also support improvements in the design of evapotranspiration (ET) and hybrid (ET + capacitive) barriers and the performance monitoring systems

    Deglacial Tropical Atlantic Subsurface Warming Links Ocean Circulation Variability to the West African Monsoon

    Get PDF
    Multiple lines of evidence show that cold stadials in the North Atlantic were accompanied by both reductions in Atlantic Meridional Overturning Circulation (AMOC) and collapses of the West African Monsoon (WAM). Although records of terrestrial change identify abrupt WAM variability across the deglaciation, few studies show how ocean temperatures evolved across the deglaciation. To identify the mechanism linking AMOC to the WAM, we generated a new record of subsurface temperature variability over the last 21 kyr based on Mg/Ca ratios in a sub-thermocline dwelling planktonic foraminifera in an Eastern Equatorial Atlantic (EEA) sediment core from the Niger Delta. Our subsurface temperature record shows abrupt subsurface warming during both the Younger Dryas (YD) and Heinrich Event 1. We also conducted a new transient coupled ocean-atmosphere model simulation across the YD that better resolves the western boundary current dynamics and find a strong negative correlation between AMOC strength and EEA subsurface temperatures caused by changes in ocean circulation and rainfall responses that are consistent with the observed WAM change. Our combined proxy and modeling results provide the first evidence that an oceanic teleconnection between AMOC strength and subsurface temperature in the EEA impacted the intensity of the WAM on millennial time scales

    200-BP-1 Prototype Hanford Barrier - 15 Years of Performance Monitoring

    Get PDF
    Engineered surface barriers are recognized as a remedial alternative to the removal, treatment and disposal of near-surface contaminants at a variety of waste sites within the DOE complex. One issue impacting their acceptance by stakeholders the use of limited data to predict long-term performance. In 1994, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using natural materials. Monitoring has been almost continuous for the last 15 yrs and has focused on barrier stability, vegetative cover, plant and animal intrusion, and the components of the water balance, including precipitation, runoff, storage, drainage, and percolation. The total precipitation received from October 1994 through August 2008 was 3311 mm on the northern half (formerly irrigated), and 2638 mm on the southern, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing in the winter and decreasing in the spring and summer to a lower limit of around 100 mm, regardless of precipitation, in response to evapotranspiration. Topographic surveys show the barrier and side slopes to be stable and the pea-gravel admix has proven effective in minimizing erosion through the creation of a desert pavement during deflationary periods. Three runoff events have been observed but the 600-mm design storage capacity has never been exceeded. Total percolation ranged from near zero amounts under the soil-covered plots to over 600 mm under the side slopes. The asphaltic concrete prevented any of this water from reaching the buried waste thereby eliminating the driving force for the contaminant remobilization. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation although the number of species decreased from 35 in 1994 to 10 in 2009. Ample evidence of insect and small mammal use suggests that the barrier is behaving like a recovering ecosystem. In September 2008, the north half of the barrier was burned to remove vegetation and study the effects of fire on barrier performance. The most immediate effects has been on water storage patterns with the bare surface showing a slower accumulation of water, a smaller peak storage and a delayed release relative to the unburned side due to evaporation . Nonetheless the residual storage at the end of the year was similar for the burned and unburned sides

    Phonon-pump XUV-photoemission-probe in graphene: evidence for non-adiabatic heating of Dirac carriers by lattice deformation

    Get PDF
    We modulate the atomic structure of bilayer graphene by driving its lattice at resonance with the in-plane E1u lattice vibration at 6.3um. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultra-violet (XUV) pulses, we measure the response of the Dirac electrons near the K-point. We observe that lattice modulation causes anomalous carrier dynamics, with the Dirac electrons reaching lower peak temperatures and relaxing at faster rate compared to when the excitation is applied away from the phonon resonance or in monolayer samples. Frozen phonon calculations predict dramatic band structure changes when the E1u vibration is driven, which we use to explain the anomalous dynamics observed in the experiment.Comment: 16 pages, 8 figure
    • …
    corecore