3,267 research outputs found

    Magnetic excitations in the metallic single-layer Ruthenates Ca(2-x)Sr(x)RuO(4) studied by inelastic neutron scattering

    Get PDF
    By inelastic neutron scattering, we have analyzed the magnetic correlations in the paramagnetic metallic region of the series Ca(2-x)Sr(x)RuO(4), 0.2<=x<=0.62. We find different contributions that correspond to 2D ferromagnetic fluctuations and to fluctuations at incommensurate wave vectors (0.11,0,0), (0.26,0,0) and (0.3,0.3,0). These components constitute the measured response as function of the Sr-concentration x, of the magnetic field and of the temperature. A generic model is applicable to metallic Ca(2-x)Sr(x)RuO(4) close to the Mott transition, in spite of their strongly varying physical properties. The amplitude, characteristic energy and width of the incommensurate components vary only little as function of x, but the ferromagnetic component depends sensitively on concentration, temperature and magnetic field. While ferromagnetic fluctuations are very strong in Ca1.38Sr0.62RuO4 with a low characteristic energy of 0.2 meV at T=1.5 K, they are strongly suppressed in Ca1.8Sr0.2RuO4, but reappear upon the application of a magnetic field and form a magnon mode above the metamagnetic transition. The inelastic neutron scattering results document how the competition between ferromagnetic and incommensurate antiferromagnetic instabilities governs the physics of this system

    Measurements of thermodynamic and transport properties of EuC2_2: a low-temperature analogue of EuO

    Full text link
    EuC2_2 is a ferromagnet with a Curie-temperature of TC15T_C \simeq 15\,K. It is semiconducting with the particularity that the resistivity drops by about 5 orders of magnitude on cooling through TCT_C, which is therefore called a metal-insulator transition. In this paper we study the magnetization, specific heat, thermal expansion, and the resistivity around this ferromagnetic transition on high-quality EuC2_2 samples. At TCT_C we observe well defined anomalies in the specific heat cp(T)c_p(T) and thermal expansion α(T)\alpha(T) data. The magnetic contributions of cp(T)c_p(T) and α(T)\alpha(T) can satisfactorily be described within a mean-field theory, taking into account the magnetization data. In zero magnetic field the magnetic contributions of the specific heat and thermal expansion fulfill a Gr\"uneisen-scaling, which is not preserved in finite fields. From an estimation of the pressure dependence of TCT_C via Ehrenfest's relation, we expect a considerable increase of TCT_C under applied pressure due to a strong spin-lattice coupling. Furthermore the influence of weak off stoichiometries δ\delta in EuC2±δ_{2 \pm \delta} was studied. It is found that δ\delta strongly affects the resistivity, but hardly changes the transition temperature. In all these aspects, the behavior of EuC2_2 strongly resembles that of EuO.Comment: 7 pages, 6 figure

    A practical high current 11 MeV production of high specific activity 89Zr

    Get PDF
    Introduction Zr-89 is a useful radionuclide for radiolabeling proteins and other molecules.1,2 There are many reports of cyclotron production of 89Zr by the 89Y (p,n) reaction. Most irradiations use thin metal backed deposits of Y and irradiation currents up to 100 µA or thicker amounts of Y or Y2O3 with ~ 20 µA irradiations.3,4 We are working to develop high specific activity 89Zr using a low energy 11 MeV cyclotron. We have found that target Y metal contains carrier Zr and higher specific activities are achieved with less Y. The goal of this work was to optimize yield while minimizing the amount of Y that was irradiated. Material and Methods All irradiations were done using a Siemens Eclipse 11 MeV proton cyclotron. Y foils were used for the experiments described here. Y2O3 was tried and abandoned due to lower yield and poor heat transfer. Yttrium metal foils from Alfa Aesar, ESPI Metals and Sigma Aldrich, 0.1 to 1 mm in thickness, were tested. Each foil was irradiated for 10 to 15 minutes. The targets to hold the Y foils were made of aluminum and were designed to fit within the “paper burn” unit of the Siemen’s Eclipse target station, allowing the Y target body to be easily inserted and removed from the system. Several Al targets of 2 cm diam. and 7.6 cm long were tested with the face of the targets from 11, 26 or 90o relative to the beam to vary watts cm−2 on the foil. The front of the foils was cooled by He convection and the foil backs by conduction to the Al target body. The target body was cooled by conduction to the water cooled Al sleeve of the target holder. Results and Conclusion The best target was two stacked, 0.25 mm thick, foils to stop beam. 92% of the 89Zr activity was in the front 0.25 mm Y foil. With the greatest slant we could irradiate up to 30 µA of beam on tar-get. However, the 13×30 mm dimensions of the foil was more mass (0.41 g) and lower specific activity than was desired. Redesign of the target gave a target 90o to the beam with 12×12 mm foils (0.15 g/foil) that were undamaged with up to 30 µA irradiation when two foils were used. This design has a reduction in beam at the edges of ~10%. With this design, a single Y foil, 0.25 mm thick sustained over 31 µA of beam and a peak power on target of 270 watts cm−2. The product was radionuclidically pure 89Zr after all 89mZr and small amounts of 13N produced from oxygen at the surface had decayed (TABLE 1). Our conclusion is that the optimum target is a single 0.25 mm thick Y foil to obtain the greatest specific activity at this proton energy. This produces 167 MBq of 89Zr at EOB with a 15 minute and 31 µA irradiation. We are continuing to redesign the clamp design to reduce losses at the edge of the beam

    Structures and orientational transitions in thin films of tilted hexatic smectics

    Full text link
    We present detailed systematic studies of structural transformations in thin liquid crystal films with the smectic-C to hexatic phase transition. For the first time all possible structures reported in the literature are observed for one material (5 O.6) at the variation of temperature and thickness. In unusual modulated structures the equilibrium period of stripes is twice with respect to the domain size. We interpret these patterns in the frame work of phenomenological Landau type theory, as equilibrium phenomena produced by a natural geometric frustration in a system having spontaneous splay distortion.Comment: 7 pages, 6 figure

    A model for scour around bridge piers caused by flood waves

    Get PDF
    The local scour process during flood waves is modeled introducing the idea of an effective work by the flow on the sediment bed around the pier. Dimensional considerations show different possible formulations for the dimensionless effective flow work W* that, in each case, is shown to be a generalization of the flow intensity concept, commonly used in existing scour formulas. A novel experimental installation able to reproduce any hydrograph with high precision in the laboratory flume is used to carry out steady and unsteady flow experiments in order to calibrate and validate the mathematical model. Results confirm the uniqueness of the relationship between the dimensionless, effective flow work W* and the relative scour depth Z*, highlighting the high predictive capacity of scour depth caused by any hydrograph. The proposed model provides good performances allowing a straightforward prediction of maximum scour depth and its evolution

    Mixture models for distance sampling detection functions

    Get PDF
    Funding: EPSRC DTGWe present a new class of models for the detection function in distance sampling surveys of wildlife populations, based on finite mixtures of simple parametric key functions such as the half-normal. The models share many of the features of the widely-used “key function plus series adjustment” (K+A) formulation: they are flexible, produce plausible shapes with a small number of parameters, allow incorporation of covariates in addition to distance and can be fitted using maximum likelihood. One important advantage over the K+A approach is that the mixtures are automatically monotonic non-increasing and non-negative, so constrained optimization is not required to ensure distance sampling assumptions are honoured. We compare the mixture formulation to the K+A approach using simulations to evaluate its applicability in a wide set of challenging situations. We also re-analyze four previously problematic real-world case studies. We find mixtures outperform K+A methods in many cases, particularly spiked line transect data (i.e., where detectability drops rapidly at small distances) and larger sample sizes. We recommend that current standard model selection methods for distance sampling detection functions are extended to include mixture models in the candidate set.Publisher PDFPeer reviewe

    Microscopic theory of quadrupolar ordering in TmTe

    Full text link
    We have calculated the crystal electric field of TmTe (T>T_Q) and have obtained that the ground state of a Tm 4f hole is the Γ7\Gamma_7 doublet in agreement with Mossbauer experiments. We study the quadrupole interactions arising from quantum transitions of 4f holes of Tm. An effective attraction is found at the L point of the Brillouin zone, qL\vec{q}_L. Assuming that the quadrupolar condensation involves a single arm of qL\vec{q}_L we show that there are two variants for quadrupole ordering which are described by the space groups C2/c and C2/m. The Landau free energy is derived in mean-field theory. The phase transition is of second order. The corresponding quadrupole order parameters are combinations of T2gT_{2g} and EgE_g components. The obtained domain structure is in agreement with observations from neutron diffraction studies for TmTe. Calculated lattice distortions are found to be different for the two variants of quadrupole ordering. We suggest to measure lattice displacements in order to discriminate between those two structures.Comment: 10 pages, 2 figures, 5 tables; accepted by PR

    Magnetic Field and Pressure Phase Diagrams of Uranium Heavy-Fermion Compound U2_2Zn17_{17}

    Full text link
    We have performed magnetization measurements at high magnetic fields of up to 53 T on single crystals of a uranium heavy-fermion compound U2_2Zn17_{17} grown by the Bridgman method. In the antiferromagnetic state below the N\'{e}el temperature TNT_{\rm N} = 9.7 K, a metamagnetic transition is found at HcH_c \simeq 32 T for the field along the [112ˉ\bar{2}0] direction (aa-axis). The magnetic phase diagram for the field along the [112ˉ\bar{2}0] direction is given. The magnetization curve shows a nonlinear increase at HmH_m \simeq 35 T in the paramagnetic state above TNT_{\rm N} up to a characteristic temperature TχmaxT_{{\chi}{\rm max}} where the magnetic susceptibility or electrical resistivity shows a maximum value. This metamagnetic behavior of the magnetization at HmH_m is discussed in comparison with the metamagnetic magnetism of the heavy-fermion superconductors UPt3_3, URu2_2Si2_2, and UPd2_2Al3_3. We have also carried out high-pressure resistivity measurement on U2_2Zn17_{17} using a diamond anvil cell up to 8.7 GPa. Noble gas argon was used as a pressure-transmitting medium to ensure a good hydrostatic environment. The N\'{e}el temperature TNT_{\rm N} is almost pressure-independent up to 4.7 GPa and starts to increase in the higher-pressure region. The pressure dependences of the coefficient of the T2T^2 term in the electrical resistivity AA, the antiferromagnetic gap Δ\Delta, and the characteristic temperature TρmaxT_{{\rho}{\rm max}} are discussed. It is found that the effect of pressure on the electronic states in U2_2Zn17_{17} is weak compared with those in the other heavy fermion compounds

    Multipole tensor analysis of the resonant x-ray scattering by quadrupolar and magnetic order in DyB2C2

    Full text link
    Resonant x-ray scattering (RXS) experiment has been performed for the (3 0 1.5) superlattice reflection in the antiferroquadrupolar and antiferromagnetic phase of DyB2C2. Azimuthal-angle dependence of the resonance enhanced intensities for both dipolar (E1) and quadrupolar (E2) resonant processes has been measured precisely with polarization analysis. Every scattering channel exhibits distinctive azimuthal dependence, differently from the symmetric reflection at (0 0 0.5) which was studied previously. We have analyzed the results using a theory developed by Lovesey et al., which directly connects atomic tensors with the cross-section of RXS. The fitting results indicate that the azimuthal dependences can be explained well by the atomic tensors up to rank 2. Rank 3 and rank 4 tensors are reflected in the data very little. In addition, The coupling scheme among the 4f quadrupolar moment, 5d ortitals, and the lattice has been determined from the interference among the Thomson scattering from the lattice distortion and the resonant scatterings of E1 and E2 processes. It has also been established from the RXS of the (3 0 1.5) reflection that the canting of the 4f quadrupolar moments exists up to T_Q. We also discuss a possible wavefunction of the ground state from the point-charge model calculation.Comment: 9 pages, 10 figure
    corecore