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Abstract
We present a new class of models for the detection function in distance sampling surveys of

wildlife populations, based on finite mixtures of simple parametric key functions such as the

half-normal. The models share many of the features of the widely-used “key function plus

series adjustment” (K+A) formulation: they are flexible, produce plausible shapes with a

small number of parameters, allow incorporation of covariates in addition to distance and

can be fitted using maximum likelihood. One important advantage over the K+A approach is

that the mixtures are automatically monotonic non-increasing and non-negative, so con-

strained optimization is not required to ensure distance sampling assumptions are hon-

oured. We compare the mixture formulation to the K+A approach using simulations to

evaluate its applicability in a wide set of challenging situations. We also re-analyze four pre-

viously problematic real-world case studies. We find mixtures outperform K+A methods in

many cases, particularly spiked line transect data (i.e., where detectability drops rapidly at

small distances) and larger sample sizes. We recommend that current standard model se-

lection methods for distance sampling detection functions are extended to include mixture

models in the candidate set.

Introduction
Distance sampling [1, 2] is a suite of methods for estimating the size or density of biological
populations. There are two main variants: line and point transects. In both, an observer visits a
randomly-located set of transect lines or points and records the distance, y, from the transect
to each object of interest (i.e., animals or plants of the target species) that is detected within
some truncation distance w (after which no observation is recorded; truncation may be chosen
after the survey has taken place, see Buckland et al [1] for further discussion). Not all objects
within w are assumed to be detected; instead the observed distances are used to estimate the pa-
rameter vector, θ, of a detection function model, g(y; θ), which describes how the probability of
detection declines with increasing distance. An assumption of the conventional method is that
g(0; θ) = 1. Given an estimate of θ, it is straightforward to estimate population size or density
(see below).
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A key part of distance sampling, therefore, is specification of the detection function model.
Buckland et al. (Chapter 2) [1] provide a set of criteria for judging the utility of candidate
model classes. Detection function models should be:

1. flexible, so that they can take a wide variety of shapes;

2. efficient, in the sense that many plausible shapes can be represented using few parameters;

3. flat at zero distance (i.e., g0(0; θ) = 0), indicating that objects in the immediate vicinity of the
observer are equally detectable; and,

4. monotonic non-increasing with increasing distance (i.e., g0(y; θ)� 0 for 0< y� w), as it is
typically unrealistic for objects to become more detectable with increasing distance.

The semiparametric “key function plus series adjustment” (K+A) modelling approach de-
veloped by Buckland [3] has become by far the most popular in practice, partly due to its inclu-
sion in the industry-standard distance sampling analysis software Distance [4] and the R [5]
package mrds [6] (available on the Comprehensive R Archive Network, CRAN; http://cran.r-
project.org/). However, as we demonstrate below, the approach has some drawbacks; in partic-
ular, although it meets criteria 1–3, it does not necessarily meet the 4th. Our purpose in this ar-
ticle is to propose an alternative class of models, based on mixtures, that meet all 4 criteria and
to evaluate its utility.

The approach of Buckland [3] was extended by Marques and Buckland [7] to allow covari-
ates in addition to distance to be included in the detection function, and, for maximum gener-
ality, it is this K+A formulation that we describe here. The detection function is thus denoted g
(y, z; θ) where z is an observation-specific vector of covariates; the formulation of Buckland [3]
is simply a special case of this model where there are no additional covariates.

In Marques and Buckland [7], the detection function is modelled as a parametric key func-
tion k and series expansion s of even functions (known as adjustment terms) with some param-
eters θ. g is then written as:

gðy; z; θÞ ¼ kðy; z; θÞf1þ sðy; z; θÞg
kð0; z; θÞf1þ sð0; z; θÞg ;

where kmay be a half-normal, hazard-rate or uniform function and smay be zero (i.e., there
are no adjustment terms), cosine, simple even polynomial or Hermite polynomial series
(though note a uniform detection function may not include covariates). The denominator en-
sures that detection function evaluates to 1 at zero distance (i.e., g(0, z; θ) = 1). Model parame-
ters are estimated using maximum likelihood. The recommended strategy for most situations
is to choose a small set of key function and adjustment combinations, and for each combina-
tion to choose the number of adjustment terms using forward selection, i.e., start with no ad-
justment terms and fit an increasing number of terms, stopping when the Akaike Information
Criterion (AIC) fails to decrease [4]. The combination with the lowest AIC is then selected as
the best model. This strategy works well in practice in many cases: the key functions cover a
range of realistic shapes for the detection function, so that often zero or one adjustments are
sufficient to provide a good fit to the data, resulting in flexible and yet efficient estimation.

The resulting detection functions are capable of being flat at zero distance and the key func-
tions are non-increasing. However, adding adjustment terms can result in non-monotonic
functions. Further, when both covariates and adjustments are included in the model the range
of the resulting detection function may not be [0, 1]. When there are no additional covariates,
one solution is to use constrained maximization, e.g. takingM equally spaced distances

y1 = 0, . . ., yM = w and ensuring that gðyi; θ̂Þ � gðyiþ1; θ̂Þ and that gðyiþ1; θ̂Þ � 0 for
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i = 1, . . .,M − 1. In Distance this constraint is implemented using the NLPQL routine [8] and
in the R package mrds, the SOLNP algorithm [9] is used.

A constrained optimisation solution presents a number of problems. First, constrained max-
imization is a more complex optimization problem than unconstrained maximization; this
means that in practice optimization algorithms may fail to find the constrained maximum. Sec-
ond, constrained maximum likelihood estimates do not have the same appealing properties as
their unconstrained relatives—for example the usual estimator of the standard error of the pa-
rameters (square root of the inverse of the information matrix) can be biased. Third, con-
straints can only be applied at a finite number of points (M = 10 is used in Distance andM =
20 in mrds by default), which can lead to the constraint points missing non-monotonic parts of
the function. Though increasing the number of points is an option, this incurs additional
computational cost. An example of constrained maximisation failing is shown in the left panel
of Fig. 1. Finally, it is not clear how to implement the constraints in the case where there are ad-
ditional covariates, particularly continuous covariates. One computationally expensive option
would be to apply the constraints at every observed covariate combination (at present both
Distance and mrds use unconstrained optimization when additional covariates are in the
model). The central and right panels of Fig. 1 from Pike et al. [10] show an example of covariate
models fitted using unconstrained optimisation: a strongly non-monotonic function has been
fitted for some covariate values. Detection probability estimates outside the range [0, 1] are
sometimes encountered during maximization when models include covariates. Given the
above issues, it seems appealing to use a formulation that guarantees monotonicity from
the outset.

Mixture models have been applied in the capture-recapture literature [11–14]. The main
utility of mixture models in capture-recapture is in better accounting for between-individual
heterogeneity, which can cause severe bias if unmodelled [15]. Unmodelled heterogeneity is
not generally considered an issue in distance sampling, provided that detection at zero distance
is certain, heterogeneity is not extreme and a flexible detection function model is used ([2], Sec-
tion 11.12). Mixture models come in two variations: finite (consisting of discrete components)
and continuous (infinitely many components, amounting to an integral with a weight func-
tion); we consider only finite mixtures here (see Discussion for further elaboration). Finite mix-
ture models offer the potential for flexible modelling since the individual parts of the mixture
model (themixture components) can be combined to obtain flexible detection functions, and
provided each component is monotonic non-increasing, the resulting combination will also be
monotonic non-increasing. In addition, mixture models are potentially well suited to deal with
highly heterogeneous detection probabilities, where some part of the population is only observ-
able at close distances while others are readily detected almost regardless of distance (for exam-
ple bird species where males are more vocal than females). Such a situation results in a
“spiked” detection function with a long flat tail—Fig. 1 shows relatively mild examples. In a
mixture model, different parts of the sample could be represented by different components,
providing a good fit to spiked data and an appealing conceptual explanation for the
underlying data.

Here we introduce a new class of distance sampling detection function models, based on
mixtures of simple parametric key functions. In the next section, we describe the models. We
then illustrate their use and explore their performance. First we investigate performance in
terms of the accuracy of estimation of the average probability of detection when data are simu-
lated from a variety of situations. We then go on to investigate survey data from a number of
studies that are potentially problematic. We compare results from mixture models with those
obtained from the current standard K+A approach, and by using a combined approach where
both the mixtures and K+A models are fitted and a final model selected using AIC. An R
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package, mmds [16] (Mixture Model Distance Sampling), implementing the methods is avail-
able from CRAN.

Methods

Finite mixture model detection functions: Formulation
Denoting the detection function as g, we consider a sum of Jmixture components gj, scaled by
some mixture proportions ϕj:

gðy; z; θ; �Þ ¼
XJ

j¼1

�jgjðy; z; θjÞ;

where
PJ

j¼1 �j ¼ 1. The distance is denoted y, the θjs are vectors of parameters for function gj,

θ is a vector of all of the θjs, f is a J-vector (i.e., vector of length J) of all of the ϕjs, and z is a
K-vector of the associated covariates.

Although other monotonic functions such as hazard-rate could be chosen, and the gjs need
not all have the same form, here we let the gjs be half-normal functions:

gðy; z; θ; �Þ ¼
XJ

j¼1

�j exp � y2

2sjðzÞ2
 !

:

Although each mixture component has a different scale, the covariates affect the scale pa-
rameters in the same way (though other, more complex, models may be possible).

Covariates are included as in Marques and Buckland [7], by decomposing the scale parame-
ter σ (see also Marques et al. [17]). Using i to subscript each observation, our formulation for

Fig 1. Two examples of detection functions that are not monotone, fitted using conventional key function plus adjustment methods in the software
Distance. The left panel shows data from humpback whale: a half-normal detection function with cosine adjustments was selected by AIC [20] but even with
constraints in place the detection function is non-monotonic, with a small secondary peak at approx. 1500m. The second and third panels show data and
models fitted to long-finned pilot whale where a half-normal detection function was selected with cosine adjustments and Beaufort sea state as a covariate
[10]. Due to the inclusion of covariates, no monotonicity constraints could be employed. The middle panel shows the detection function averaged over the
covariate values and the right panel the marginal detection function for 25th, 50th and 75th quantiles of the Beaufort sea state covariate; non-monotonicity
occurs at approx. 2500m.

doi:10.1371/journal.pone.0118726.g001
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the scale parameter σij, is

sij ¼ exp ðb0j þ
XK
k¼1

bkzikÞ;

where zik is the k
th covariate for the ith observation. In this case θ will contain the β0js and βks.

We can write the pdf of the observed distances conditional on the observed covariates
as [2]:

f ðyjz; θ; �Þ ¼ pðyÞgðy; z; θ; �ÞR w

0
pðtÞgðt; z; θ; �Þdt :

where π(y) is the pdf of object distances (observed and unobserved). The likelihood can then
be formed by taking product of these pdfs over the n observations. The specific form of the like-
lihood differs between line and point transects, because sampler geometry means that the form
of π(y) is different for lines and points. For line transects, with random line placement, we ex-
pect an equal number of objects at all distances from the line, and hence π(y) = 1/w (where w is
again the truncation distance). The likelihood is then given by:

Lðθ; �;yjz1; . . . ; znÞ ¼
Yn
i¼1

f ðyijzi; θ; �Þ

¼
Yn
i¼1

gðyi; zi; θ; �Þ
miðziÞ

¼
Yn
i¼1

PJ
j¼1 �jgjðyi; zi; θjÞ

miðziÞ

where μi(zi), the effective strip width (for covariate combination zi), is given by:

miðziÞ ¼
XJ

j¼1

�j

Z w

0

gjðy; zi; θjÞdy: ð1Þ

For point transects, with random point placement, the expected number of objects increases
with increasing distance from the point, and hence π(y) = 2y/w2, giving

Lðθ; �;yjz1; . . . ; znÞ ¼
Yn
i¼1

f ðyijzi; θ; �Þ

¼
Yn
i¼1

2pyigðyi; zi; θ; �Þ
ni

¼
Yn
i¼1

2pyi
PJ

j¼1 �jgjðyi; zi; θjÞ
ni

where νi, the effective area of detection (for covariate combination zi), is defined as:

ni ¼ 2p
XJ

j¼1

�j

Z w

0

ygjðy; zi; θjÞdy: ð2Þ

For both line and point transects, parameters are estimated using maximum likelihood.
Practicalities associated with this maximization, along with analytic derivatives of the likeli-
hood are described in S1 Appendix and S1 Text. The best number of mixture components to
use for inference can be determined using standard model selection techniques, such as
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Akaike’s Information Criterion (AIC), and goodness-of-fit of fitted models can be assessed just
as for K+A models using, for example quantile-quantile plots and Kolmogorov-Smironov tests
(see Buckland et al. [2], Section 11.11).

In this article, we assume the distance data are in the form of “exact” object-transect dis-
tances; alternatively, distances can be grouped into intervals, with pre-defined cutpoints (e.g.,
0–10m, 10–20m, etc.), so that the data are the distance interval of each observation. In this
case, a multinomial likelihood is obtained (see, e.g. Buckland et al. [1], Section 3.3.2). Also, in
some cases (e.g., some aerial surveys), objects below a defined distance are not counted—so-
called “left truncation” ([1] Section 4.3.2). The likelihood is readily amended to account for
this, by changing the lower limit of integration in equation (1) or (2).

Estimating population size
Population size can be estimated using the Horvitz-Thompson-like estimator [7]:

N̂ ¼ A
a

Xn
i¼1

1

p̂i

ð3Þ

where A is the area of the study region for which population size is being estimated, a is the
size of the sampled area, and pi is the probability of the i

th observation being detected given it is
within the sampled area. For line transects, a = 2wL where L is the total line length, and

p̂i ¼
1

w

XJ

j¼1

�̂ j

Z w

0

gjðy; zi; θ̂ jÞdy:

For point transects, a = πw2k where k is the number of points, and

p̂i ¼
2p
w2

XJ

j¼1

�̂ j

Z w

0

ygjðy; zi; θ̂ jÞdy:

A standard summary statistic is the average detection probability for an animal within the sam-

pled area, P̂a, which is given by:

P̂a ¼ n=N̂ :

Estimators for the variances of N̂ and P̂a are given in S2 Text.

Examples
Simulated data. We wish to ensure that the class of models we propose can be applied to a

wide variety of situations that may arise. Extensive simulations were therefore carried out to in-
vestigate performance (in terms of the accuracy of estimation of Pa) when the true detection
function model is not known to the estimation procedure. The average detection probability,
Pa, is related to the estimated abundance as seen above and is easily calculated as a simple sta-
tistic to summarise and compare the fitted models.

Buckland et al. [1] show that accurate results are readily obtained in situations where there
is a wide “shoulder” of high detection probability at small and medium distances: in such situa-
tions, the dependence on having a good detection function model is only slight. Hence, we
focus here on a variety of more challenging scenarios. We generated data from commonly used
detection function models (half-normal and hazard-rate [1], as well as exponential power series
[18]), though with parameters that lead to more challenging estimation problems.

Mixture Models for Distance Sampling Detection Functions
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Each simulation involved generating 200 replicate datasets from a specified detection func-
tion model (assuming the entire study area was included within the surveyed transects, i.e., A =
a in equation (3), and a truncation distance of w = 1), fitting each dataset with a range of mix-
ture and key series plus series adjustment (K+A) models, and in each case recording estimated
parameter values and abundance from the model with the lowest AIC in each of: mixture mod-
els, K+A models, and both combined. Mixture models with 1-, 2-, and 3-point half-normal
components were fitted to the data along with two K+A models: half-normal plus cosine ad-
justments and hazard rate plus simple polynomial adjustments, both with monotonicity con-
straints implemented as described above and with a maximum of 3 adjustments. Mixture
models and K+A models were fitted using the R packages mmds (version 1.1) and Distance
[19] (a simplified interface to mrds; version 0.6.1) respectively, both written by the authors.

Fourteen different simulation scenarios were investigated, in five groups, as described below
and illustrated in Fig. 2, one line per group. True parameter values and summary statistics are
given in S2 Appendix. For each scenario, a simulation was performed at each of five sample
sizes (number of observations, n): 30 (low), 60 (recommended minimum for line transects [1]),
120 (adequate), 480 (large) and 960 (very large). We anticipated performance would depend
upon sample size, because: the methods are likelihood-based and hence only asymptotically
unbiased even if the correct model is fitted; the use of AIC to select model complexity meant
that more flexible (and hence accurate) models could be expected to be selected given larger
sample sizes. Mixture models are “parameter hungry” compared with K+A models, in the
sense that each additional mixture component requires 2 extra parameters, while each addi-
tional adjustment term requires only one and hence, given the use of AIC for model selection,
the relative performance of the two approaches may change at different sample sizes.

Group A. Line transect with 2-point half-normal mixture detection functions. Four scenarios
were tested, representing a range of potentially challenging detection functions. Scenarios A1
and A2 both have mixture components with quite different scale parameters, but in A1 the ma-
jority of data come from the less detectable component while in A2 it comes from the more de-
tectable component. A3 tests the behaviour of the models when the scale parameter of one of
the mixture components is very large relative to the truncation distance. One component of A4
is a large spike (i.e., a sharp decline in detectability at small distances) in comparison to the
other component leading to high heterogeneity in detection probability, which is similar to
some of the data we analyse in the case studies, below.

Group B. Point transect with detection functions as in the previous scenario. The geometry of
point transect sampling means there are few animals close to the point relative to those at larg-
er distances. Hence, for a given sample size of observations, there are far fewer at small dis-
tances than for line transects, making it harder to accurately model the detection function in
the critical region close to the point. We therefore anticipate that performance will be worse for
point transects. For this group, Fig. 2 shows pdfs of the observed distances.

Group C. Line transect with 3-point half-normal detection functions. Two scenarios were
tested. C1 has a detection function much like A2, enabling us to investigate the efficacy of
model selection (i.e., we expect a 2-point mixture to be selected and to produce good results).
C2 is a more complex shape that could only be created using a 3-point mixture; in particular
(as with A3), one of the components has a large scale parameter relative to the
truncation distance.

Group D. Line transect with 2-point half-normal detection functions, and additional covari-
ates. We used covariate models to test two aspects of model robustness. In the first, we assumed
the covariate values were observed, and included covariate models in the candidate set, along
with distance-only models. Our prediction was that (at large sample sizes at least) covariate
models would be selected and estimation of Pa unbiased. In the second, we assumed the
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Fig 2. Plots of the models used in the simulation.Group A (top row): detection functions for four line transect senarios with no covariates (solid lines) and
their constituent mixture components (dashed lines). Group B (second row): pdfs for four point transect simulations with no covariates (solid lines), with
associated component pdfs (dashed lines), rescaled so the area under each curve is one; the detection functions are as in the top row. Group C (third row):
two 3-point mixture scenarios for non-covariate line transect data, again with their constituent mixture components (dashed lines). Group D (fourth row): two
covariate model scenarios, the first two panels are for a binary covariate scenario, the second two for a continuous covariate scenario; first panels in each
pair show the detection function averaged over the covariates (along with the mixture components, similarly averaged) and the second panels showmarginal
detection functions with the levels (or quartiles) of the detection function. Group E (fifth row): exponential power series model and a 2-point mixture of hazard-
rate function (see S2 Appendix for formulation) for two line transect scenarios.

doi:10.1371/journal.pone.0118726.g002
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covariate values were not observed, and hence covariate models were not in the candidate set.
Our expectation was that (at larger sample sizes) more complex mixture distributions would be
selected to compensate for the additional unobserved complexity, and that estimation of Pa
would not be greatly affected. Two scenarios were tested. D1 had a binary factor covariate, with
half the observations having one covariate value and half the other. D2 had a continuous covar-
iate, whose fixed values were generated from a standard normal distribution function. Detec-
tion functions are shown in the fourth row of Fig. 2, along with the marginal detection
functions for the levels/quartiles of the covariates. Note that, for the unobserved covariate mod-
els, D1 is equivalent to a 4-point mixture, while D2 is equivalent to a 2-point continuous mix-
ture; neither of these models were in the candidate model set. In the case of the K+A models,
and in line with common practice, if covariates were included in the models then adjustment
terms were not.

Group E. Line transect with other detection functions. The above models all use the same
functional form for gj in generation and fitting. Here we tested the model robustness using two
alternative data generating functions, not in the candidate model set (see S2 Appendix for for-
mulation). E1 used an exponential power series function (a generalization of the half-normal
function with an additional shape parameter); E2 used a mixture of two hazard-rate functions,
giving a shape that may be difficult to fit with half-normal models.

Case studies. The first two case studies return to the datasets depicted in Fig. 1. The left
panel of Fig. 1 show clear non-monotonicity, which we wish to address with our mixture detec-
tion functions. This first case study also includes two other species, illustrating how the new ap-
proach can fit survey data as well as, or better than, the K+A approach when there are not
issues of monotonicity. In the second case study covariates cause the non-monotonicity (seen
in the right panel of Fig. 1), which we can also address within our mixture model framework.
The third case study demonstrates modelling of spiked line transect data (of wood ants), for
which the mixtures may yield more flexible models than K+A methods. Finally, the fourth ex-
ample is a large point transect dataset (of Hawaiian amakihi), which include covariates.

Case study: British Columbia marine mammals. Williams and Thomas [20] used a data
from a line transect survey to study several species of marine mammal off the coast of British
Columbia, Canada. Here, we investigate three species: harbour seal (Phoca vitulina) in water
(the data also contained observations of hauled-out animals, which were not analysed here),
harbour porpoise (Phocoena phocoena) and humpback whale (Megaptera novaeangliae). Trun-
cation distances were set at 500m, 500m and 2000m for each species respectively, giving sample
sizes of 232, 59, and 70 observations.

Case study: Long-finned pilot whales. Pike et al. [10] analyzed observations of 84 pods of
long-finned pilot whales (Globicephala melas), sighted as part of a line transect survey, the
North Atlantic Sightings Survey NASS-2001. The Beaufort sea state was recorded as a covariate
during the survey and enters the authors’model as either a continuous variable, or a factor
with 2 levels (0–1, 2+), 3 levels (0–1, 2, 3+), or 5 levels (0, 1, 2, 3, 4, with one value of 3.5 coded
as 4).

Case study: Wood ants. Borkin et al. [20] analyse data on two species of wood ant (Formi-
ca aquilonia and Formica lugubris) collected during a line transect survey of the Abernethy
Forest, Scotland, in 2003. The number of nests sighted was 150, with the farthest being 72.04m
from the transect, although 45% of the nest sightings lay within 4m of the line. As part of their
analysis, several different truncation distances were used. Larger truncation distances led to a
large variance in the encounter rate estimates and hence in overall abundance estimates [21].
This is due to the spike caused by the large number of detections close to the line (see S4 Fig).
As well as distances, three covariates were recorded: habitat type (a four level factor), the size of
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each nest (a continuous variable, calculated as half-width multiplied by height) and species (a
two level factor).

Case study: Amakihi. Marques et al. [17] analyse point transect data on a Hawaiian song-
bird, the Amakihi (Hemignathus virens). The data consist of 1243 observations (after trunca-
tion at 82.5m), collected at 41 points between 1992 and 1995, together with three covariates in
addition to distance: the observer (a three level factor), minutes after sunrise (continuous) and
hours after sunrise (a six level factor).

Results

Simulation results
Fig. 3 summarizes the estimates of Pa obtained if the candidate model set contains only mixture
models (including 1-point mixtures); the numbers below each boxplot are the proportion of
times the model selected by AIC was the model which generated the data. S1 Fig shows the dis-
tribution of estimates when only K+A models are used, giving a baseline to compare the mix-
ture model results against (S2 Fig). Results using the recommended modelling strategy of both
mixture and K+A models is shown in S2 Fig, and the number of times each model is chosen
using the combined modelling strategy is shown in S3 Fig.

For Group A, the mixture approach produced unbiased results for scenarios A1 and A3 at
all but the lowest sample size; even for the n = 30 scenarios the bias was small, despite the cor-
rect 2-point mixture model being selected only 46–60% of the time (Fig. 3—the half normal
model was selected the remainder of the time). The K+A approach also performed well (S1
Fig). Unsurprisingly, therefore, the combined approach performed well (S2 Fig); what was a lit-
tle surprising was that the correct model was only selected 60–76% of the time at the highest
sample sizes for scenario A1, with the hazard-rate K+A model selected the remainder (S3 Fig).
Scenarios A2 and A4 showed positive bias at smaller sample sizes under the mixture approach;
bias reduced substantially by 480 observations, where a large proportion of the selected models
were 2-point mixtures. Unlike scenarios A1 and A3, the detection functions in scenarios A2
and A4 were evidently not well approximated by a half-normal, and hence at lower sample
sizes where the two point mixture tended not to be selected, the results were biased. The K+A
approach did not fare well with these scenarios, showing strong positive bias even at the largest
sample sizes. In combination, the mixture models were chosen over K+A models at larger sam-
ple sizes, and so the combined modelling approach produced much better results than K
+A alone.

As expected, results were worse for the point transect scenarios of Group B. Estimates from
the mixture approach were biased at low sample sizes for B1, when the two-point model was
rarely selected, but were unbiased given 120 observations and greater. Estimates for B3 were
unbiased. For B2 and B4, results were positively biased at small sample sizes, just as with A2
and A4, but unlike the line transect scenarios the bias did not disappear even at the largest sam-
ple size. This is unsurprising given the very small number of detections coming from the less
detectable mixture component (see Fig. 2—the marginal pdf is almost identical to that of the
easier to detect mixture component). Bias was generally worse with the K+A approach (S1
Fig), and the combined approach (S2 Fig) produced marginally better results than K+A alone;
for scenarios B1 and B3 the combined results were much better than K+A alone.

Group C were the 3-point mixture scenarios. For C1, results were similar to A2—unsurpris-
ing, given the similarity in detection functions. A 3-point mixture model was almost never cho-
sen by AIC (Fig. 3). For C2, estimates were surprisingly good, even when the 3-point mixture
was not the selected model, at lower sample sizes. Evidently, the function is well approximated
by a 2-point mixture, although at larger sample sizes (n = 480 and above), the 3-point model is
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preferred by AIC. In both cases, the K+A results were worse (S1 Fig), although they were not
far from unbiased for C2. In the combined results, the mixture models were chosen most
52–68%) of the time for model C1, while for C2 the mixture models were chosen less often
(15–60% of the time); despite this, the results were just as good as those using mixtures alone
(S2 Fig).

We first address the results of the Group D simulations when covariates were available for
inclusion in candidate models. Results for D1 were positively biased at lower sample sizes, but

Fig 3. Simulation results: boxplots of the estimated average detection probabilities, Pa, for the best mixturemodel (by AIC score). Layout is as in
Fig. 2. Grey lines indicate the true value of the average detection probability. Numbers underneath each boxplot give the proportion of AIC best models that
were of the same form as the model that the data was simulated from (e.g., Scenario D1 the proportion of AIC best models that were 2-point mixtures that
included the covariate in the model).

doi:10.1371/journal.pone.0118726.g003
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less so as the sample size increased, and almost unbiased by 120 observations, where the correct
model was selected most of the time (Fig. 3). Results for D2 were close to unbiased at all sample
sizes. Estimates from the K+A models were positively biased at almost all sample sizes for D1,
and almost unbiased for D2 (S1 Fig).

When covariate information is not available for fitting the model, the mixture model detec-
tion functions still performed well, showing that when covariates are not available mixture
components can compensate, though not through using additional components (see S3 Fig,
3-point mixtures are never AIC-best models). For the K+A models without covariates, perfor-
mance was also similar to that from the covariate models, indicating that the flexibility provid-
ed by the series adjustment can compensate for lack of covariate information in that
framework. However, results were still slightly biased even at large sample sizes (S1 Fig). As
might be expected, bias was less when both approaches were combined (S2 Fig).

The Group E results were encouraging. Although the mixture formulation was biased even
at large sample sizes, the bias was always small (Fig. 3), and generally no worse than that under
the K+A formulation, which also showed a small bias (S1 Fig). We had anticipated good per-
formance of the mixture models for scenario E1, since the detection function shape is not far
from half-normal; however it was not obvious that performance would be good for E2, where
the marginal shape cannot be approximated well by a mixture of half-normal functions. The
combined strategy was no worse than either formulation alone in terms of bias.

Case studies results
British Columbia marine mammals. Results are summarised in Table 1 and detection

functions for the AIC-best models are shown in Fig. 4. In each case mixture models were two
component models. For harbour seal, the mixture model had a lower AIC than for the K+A

model reported in Williams and Thomas [20]. The mixture model P̂a is approximately 20%

lower, implying that the previous estimate of N̂ may have been an underestimate (as Pa de-
creases, 1/Pa increases in the Horvitz-Thompson estimator giving a larger estimate of abun-
dance). For harbour porpoise, the mixture model AIC is almost 1.5 points higher than the K+A
model, which was a hazard-rate with no adjustments. Hence, the model likelihoods are very
similar, but the penalty due to the 2-point mixture having an additional parameter prevents it

from being selected. The P̂a from the two models are very close. Lastly, for humpback whales,
the mixture model AIC is almost 3 points higher than the K+A model—however, one advan-
tage of the mixture model is that the fitted function is monotone (Fig. 4) while the K+A func-

tion is not (Fig. 1). Again, the estimated P̂as are very similar.
Long-finned pilot whales. Amixture model detection function was fitted with each covar-

iate, as well as a model with no covariates. The best model by AIC score (Table 1) was a 2-point
mixture with Beaufort sea state included as a continuous covariate. Fig. 5 shows the average de-
tection function (in the sense that a detection function was evaluated over the range (0, w) for
each covariate combination and was then averaged point-wise) and the marginal detection
function with the quartiles of Beaufort sea state. None of the non-monotonic behaviour seen in
Fig. 1 can occur when a mixture is used.

Wood ants. All combinations of main effects were fitted (Table 1), and the best model by
AIC was a 2-point mixture with nest size and habitat as covariates (S4 Fig). This model had an
AIC that was considerably (6 points) lower than the AIC-best K+A model, a hazard-rate with

the same covariates. P̂a is about 10% lower when estimated using the mixture model.
Amakihi. The AIC-best mixture model was a two point mixture with observer and min-

utes after sunrise as covariates (S5 Fig), closely followed by the model with only observer as a
covariate (Table 1). In this case a hazard-rate with observer and minutes after sunrise as
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covariates performed better than mixtures in AIC terms, although by less than 1 AIC point.

The difference in P̂a between these two models is about 15%. It is encouraging that there is
such a small difference in AIC, and that covariate mixture models were selected over mixture
models without covariates, despite the large number of parameters that such models entail.

Discussion
We have investigated and demonstrated the utility of detection functions constructed from
mixtures of half-normal functions in both line and point transect distance sampling. We also

Table 1. Comparison of case study analysis results.

Species Model ΔAIC P̂ a %CVP̂ a K-S p

Harbour seal (in water) Hn + cos(2) 1.19 0.425 7.55 0.52

Hn 2-pt 0.00 0.335 15.38 0.94

Harbour porpoise Hr 0.00 0.212 32.0 0.99

Hn 2-pt 1.43 0.254 18.18 0.99

Humpback whale Hn + cos(2) 0.00 0.386 12.64 0.67

Hn 2-pt 2.88 0.381 18.48 0.64

Long-finned pilot whales Hn + cos(2) BSS (cont.) 1.94 0.452 8.69 0.48

Hn 2-pt BSS (cont.) 0.00 0.216 24.17 0.67

Hn 2-pt BSS5 0.29 0.208 28.84 0.82

Hn 2-pt BSS2 0.43 0.211 23.39 0.95

Hn 2-pt BSS3 11.71 0.270 17.46 0.99

Hn 2-pt 13.86 0.295 17.17 0.95

Wood ants Hr nest.size + habitat 6.29 0.195 21.72 0.89

Hn 2-pt habitat + nest.size 0.00 0.179 17.55 0.72

Hn 2-pt nest.size + species + habitat 1.81 0.178 18.09 0.83

Hn 2-pt nest.size 4.37 0.214 15.19 0.76

Hn 2-pt nest.size + species 4.65 0.210 15.84 0.77

Hn 2-pt habitat 14.00 0.188 14.85 0.97

Hn 2-pt habitat + species 15.96 0.186 14.94 0.99

Hn 2-pt None 17.34 0.184 15.46 0.96

Hn 2-pt species 19.32 0.184 15.48 0.94

Amakihi Hr obs + mas 0.00 0.319 5.11 0.08

Hn 2-pt obs+mas 0.69 0.279 6.1 0.14

Hn 2-pt obs 1.31 0.279 5.86 0.04

Hn 2-pt obs+has 5.15 0.283 6.21 0.23

Hn 2-pt mas+has+obs 7.12 0.282 6.33 0.35

Hn 2-pt mas 27.73 0.284 6.52 0.31

Hn 2-pt None 28.10 0.283 6.21 0.12

Hn 2-pt has 29.81 0.282 6.95 0.33

Hn 2-pt mas+has 31.79 0.282 6.97 0.43

Comparison of results from Williams and Thomas [20], Pike et al. [10], Borkin et al. [21] and Marques et al. [17] with results from fitting mixture model

detection functions. Table columns give case study species, model fitted (In the table “(cont.)” denotes that the covariate was included in the model as

continuous, otherwise covariates entered the model as factors; BBSn indicates Beaufort sea state with n factors); cos(x) indicates a Cosine adjustment of

order x), difference in AIC from AIC-best model (denotes with ΔAIC = 0), average detectability, percentage coefficient of variation in average detectability

and p-value from a Kolmogorov-Smirnov goodness-of-fit test. In each case the first line for each data set is the model from the original article and the

subsequent models are in ΔAIC order. Mixture model components were selected by AIC (ΔAIC from best model is listed).

doi:10.1371/journal.pone.0118726.t001
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show that covariates can be readily included in such models. Further, these mixture detection
functions can be simply “dropped into” other extensions of conventional distance sampling
such as: methods for dealing with incomplete detection at zero distance [22, 23] (for these
models, there is an additional mark-recapture component to the likelihood, where mixture
models could also be used, as in [11–14]), spatial models for distance sampling data [24, 25] or
models for surveys where distances were measured with error [26]. Though we were necessarily

Fig 4. Plots of the mixture model detection functions fit to the British Columbia marinemammal data. In each case the best mixture model by AIC was
a 2-point mixture. Dashed lines show the mixture components.

doi:10.1371/journal.pone.0118726.g004

Fig 5. The (AIC) best model for the long-finned pilot whale data: a 2-point mixture model detection function with Beaufort sea state as a continuous
covariate. Left: the average detection function (detection function evaluated over the range (0,w) for each covariate combination and was then averaged
point-wise) with components as dashed lines. Right: the marginal detection function with the quantiles (25%, 50% and 75%) of the Beaufort sea state.

doi:10.1371/journal.pone.0118726.g005
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limited to only a few example data sets on specific taxa, we note that there is no limitation to
the species or survey setup that mixture model detection functions can be used with.

We have shown that the mixture models perform well on both simulated and survey data
where traditional methods produce suboptimal results. In many cases the proposed model out-
performed K+A models in AIC terms, which is surprising given that the mixture models in
question often had more parameters. In particular mixture model detection functions appear
useful when dealing with line transect data that has a spike in detection probability at small dis-
tances, though we note that it is better to avoid collecting such data in the first place, where
possible ([1], p. 42) (spikes are commonly caused by observers spending too much effort near
the trackline/point and not looking further afield). Also, other non-detection-related factors
can cause a spike, such as rounding of measurements or responsive animal movement, and if
present in the data these should be dealt with using other analysis strategies or field methods
[1]. For line transect surveys, unbiased estimation of Pa was possible even for very spiked detec-
tion functions, so long as the sample size of observations was large (Scenarios A2 and A4). By
contrast, estimates remained badly biased at all sample sizes for the equivalent point transect
scenarios (B2 and B4). For such surveys, where such a small proportion of the data comes from
the closer distances, then perhaps the only effective solution is to constrain the fit, for example
using a Bayesian approach with strong priors on the detection function parameters.

We note that in our case studies, a larger coefficient of variation in the average detectability
was reported with mixtures than with half-normal K+A models but mixtures seemed to have

lower CVs (again, of P̂a) than hazard-rate K+A models (in the line transect case, ignoring non-
monotonic K+A models; see Table 1). This can be explained by considering the flexibility of
the detection function. A half-normal detection function is relatively inflexible so uncertainty
is low (since there is only one parameter and it only affects the scale of the function). However,
for a hazard-rate model the shoulder can vary from very small (spiked) to very large (depend-
ing on the shape parameter), so the uncertainty in this more flexible model is larger. Mixtures
of half-normals lie somewhere in between these two options (only the scales change which are
weighted, we are then summing smaller variances).

Simulations show that small sample sizes do not support the use of mixture models with a
high number of components, even when the data were generated from such a model. We avoid
poorly fitting models of this sort by using both K+A and mixture detection functions and se-
lecting the best between them (comparing Fig. 3 with S1 Fig). This integrated approach is
builds upon current model selection procedures for a detection function analysis—currently se-
lection is made between different K+A formulations and number of adjustment terms using
AIC; mixture models simply add another alternative detection function where rather than ad-
justment terms, mixture components are selected. So existing key-only models are special cases
of the mixture detection functions.

In simulation we observed that 3-point mixture did not act as good surrogates for missing
covariate information; 2-point mixtures were generally chosen by AIC (though these 2-point
models performed well at higher sample sizes). In our case studies, 2-point mixtures consis-
tently provided the best fit. Only examination of further data will show whether 3-point and
higher mixtures can be supported, however we note that when the K+A series formulation is
used, detection functions with 5 or more parameters are rarely selected by AIC (a 3-point mix-
ture with no covariates requires 5 parameters). These results echo those in capture-recapture
literature [11], where often only 2 component mixtures were selected.

We have compared the new mixture approach for modelling detection functions with the
most widely used alternative, K+A. However, other approaches exist, for example nonparamet-
ric and semiparametric kernel estimators (see Eidous [27] and references therein). So far as we
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are aware, all current alternatives fail some of the criteria given in the introduction—for exam-
ple, the kernel functions can be non-monotonic. Giammarino & Quatto [28] have proposed a
“mixture model” detection function—their model takes a rather different form to the mixtures
we describe here (simply exp(−x2/(2σ2)) − x/τ)), though their results indicate there is little dif-
ference between their model and K+A approaches.

The mixture component used here was a half-normal, but other component functions may
prove useful. In particular, a mixture of hazard-rate functions with different shape and/or scale
parameters for each component may be better at fitting detection functions with a wide shoul-
der, a steep drop-off and then a second plateau in detectability (see E2 in Fig. 2, which was gen-
erated from a mixture of two hazard-rate functions). Further, a mixture of a half-normal (or
hazard-rate) and a uniform kernel may prove useful—this would have only two (or three) pa-
rameters, and hence may be more competitive (in AIC terms) with K+A models.

Another potentially useful extension is continuous mixtures of the form

gðxÞ ¼
Z
R

φðkÞgkðx;Z; θ; kÞdk

where φ(κ) is a weighting function that controls the mixing of gκ. Provided that an appropriate
function can be chosen for φ, more flexible models could be used whilst keeping the number of
parameters low. In addition, a combination of both finite and continuous mixtures could be
used, echoing the work in capture-recapture [14]. Such models require more complex optimi-
sation procedures in order to estimate their parameters in a maximum likelihood context,
though are well suited to a Bayesian setting.

Mixture model detection functions based on half-normal components are available as an R
package, mmds, which is available on CRAN. These models will be added to the next version of
the Distance for Windows software and the R package Distance.

Supporting Information
S1 Appendix. Optimization details.
(PDF)

S2 Appendix. Simulation parameters.
(PDF)

S1 Text. Derivatives of the likelihood.
(PDF)

S2 Text. Variance estimation for mixture model detection functions.
(PDF)

S1 Fig. Simulation results: boxplots of the estimated average detection probabilities, Pa, for
the best K+A model (by AIC score). Grey lines indicate the true value of the average
detection probability.
(EPS)

S2 Fig. Simulation results: boxplots of the estimated average detection probabilities, Pa, for
the best model (by AIC score) for both mixture and K+A models. In each case the best over-
all model was selected, reflecting the modelling approach undertaken in practice. Grey lines in-
dicate the true value of the average detection probability. Numbers underneath each boxplot
give the proportion of AIC best models that were of the same form as the model that the data
was simulated from (e.g., in scenario D1, the proportion of AIC best models that were 2-point
mixtures that included the covariate in the model). Numbers above each model give the
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proportion of times that the AIC best model was a 2- or 3-point mixture model.
(EPS)

S3 Fig. Simulation results: stacked bar charts showing the number of models selected by
AIC that fall into the given model classes. Layout is as in S2 Fig. “hn” is a half-normal detec-
tion function (i.e. 1-point mixture) and “hr” is a hazard-rate detection function (no adjust-
ments). K+A indicates a key function plus adjustment term model where “cos” is cosine and
“poly” are simple polynomial adjustments. MMDS is a mixture model with 2 or 3 components
(“2-pt” or “3-pt”, respectively). “(cov)” indicates that covariates were included in the model.
(EPS)

S4 Fig. Plot of the detection functions for the AIC best model for the ants data set (2-point
mixture with nest size and habitat as covariates). The first panel shows the average detection
function (dashed lines are the two mixture components of the detection function, averaged
over covariate values). The second and third panels show the quartiles of nest size and the lev-
els of habitat type respectively.
(EPS)

S5 Fig. Plots of the (AIC) best mixture model for the Amakihi data: a 2-point mixture with
observer and minutes after sunrise as covariates. Top row: detection function averaged over
covariates (dashed lines are each mixture component averaged over covariates), marginal de-
tection function showing the levels of observer (averaged over the values of minutes after sun-
rise) and marginal detection function for minutes after sunrise ranging between 0 and 300
minutes (averaged over the levels of observer), as in Marques et al (2007) [17]. Bottom row: pdf
of distances averaged over the covariate values.
(EPS)
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