1,398 research outputs found
Incorporating Security Behaviour into Business Models Using a Model Driven Approach
There has, in recent years, been growing interest in Model Driven Engineering (MDE), in which models are the primary design artifacts and transformations are applied to these models to generate refinements leading to usable implementations over specific platforms. There is also interest in factoring out a number of non-functional aspects, such as security, to provide reusable solutions applicable to a number of different applications. This paper brings these two approaches together, investigating, in particular, the way behaviour from the different sources can be combined and integrated into a single design model. Doing so involves transformations that weave together the constraints from the various aspects and are, as a result, more complex to specify than the linear pipelines of transformations used in most MDE work to date. The approach taken here involves using an aspect model as a template for refining particular patterns in the business model, and the transformations are expressed as graph rewriting rules for both static and behaviour elements of the models
The ODO project: a Case Study in Integration of Multimedia Services
Recent years have witnessed a steady growth in the availability of wide-area multi-service networks. These support a variety of traffic types including data, control messages, audio and video. Consequently they are often thought of as integrated media carriers. To date, however, use of these networks has been limited to isolated applications which exhibit very little or no integration amongst themselves. This paper describes a project which investigated organisational, user interfacing and programming techniques to exploit this integration of services at the application level
Communications software performance prediction
Software development can be costly and it is important that confidence in a software system be established as early as possible in the design process. Where the software supports communication services, it is essential that the resultant system will operate within certain performance constraints (e.g. response time). This paper gives an overview of work in progress on a collaborative project sponsored by BT which aims to offer performance predictions at an early stage in the software design process. The Permabase architecture enables object-oriented software designs to be combined with descriptions of the network configuration and workload as a basis for the input to a simulation model which can predict aspects of the performance of the system. The prototype implementation of the architecture uses a combination of linked design and simulation tools
Dissipation control in cavity QED with oscillating mode structures
We demonstrate how a time-dependent dissipative environment may be used as a tool for controlling the quantum state of a two-level atom. In our model system the frequency and coupling strength associated with microscopic reservoir modes are modulated, while the principal features of the reservoir structure remain fixed in time. Physically, this may be achieved by containing a static atom-cavity system inside an oscillating external bath. We show that it is possible to dynamically decouple the atom from its environment, despite the fact that the two remain resonant at all times. This can lead to Markovian dynamics, even for a strong atom-bath coupling, as the atomic decay becomes inhibited into all but a few channels; the reservoir occupation spectrum consequently acquires a sideband structure, with peaks separated by the frequency of the environmental modulation. The reduction in the rate of spontaneous emission using this approach can be significantly greater than could be achieved with an oscillatory atom-bath detuning using the same parameters
Decoherence-free preparation of Dicke states of trapped ions by collective stimulated Raman adiabatic passage
We propose a simple technique for the generation of arbitrary-sized Dicke
states in a chain of trapped ions. The method uses global addressing of the
entire chain by two pairs of delayed but partially overlapping laser pulses to
engineer a collective adiabatic passage along a multi-ion dark state. Our
technique, which is a many-particle generalization of stimulated Raman
adiabatic passage (STIRAP), is decoherence-free with respect to spontaneous
emission and robust against moderate fluctuations in the experimental
parameters. Furthermore, because the process is very rapid, the effects of
heating are almost negligible under realistic experimental conditions. We
predict that the overall fidelity of synthesis of a Dicke state involving ten
ions sharing two excitations should approach 98% with currently achievable
experimental parameters.Comment: 14 pages, 8 figure
Scalable quantum search using trapped ions
We propose a scalable implementation of Grover's quantum search algorithm in
a trapped-ion quantum information processor. The system is initialized in an
entangled Dicke state by using simple adiabatic techniques. The
inversion-about-average and the oracle operators take the form of single
off-resonant laser pulses, addressing, respectively, all and half of the ions
in the trap. This is made possible by utilizing the physical symmetrie of the
trapped-ion linear crystal. The physical realization of the algorithm
represents a dramatic simplification: each logical iteration (oracle and
inversion about average) requires only two physical interaction steps, in
contrast to the large number of concatenated gates required by previous
approaches. This does not only facilitate the implementation, but also
increases the overall fidelity of the algorithm.Comment: 6 pages, 2 figure
Exogenous schwann cells migrate, remyelinate and promote clinical recovery in experimental auto-immune encephalomyelitis
Schwann cell (SC) transplantation is currently being discussed as a strategy that may promote functional recovery in patients with multiple sclerosis (MS) and other inflammatory demyelinating diseases of the central nervous system (CNS). However this assumes they will not only survive but also remyelinate demyelinated axons in the chronically inflamed CNS. To address this question we investigated the fate of transplanted SCs in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in the Dark Agouti rat; an animal model that reproduces the complex inflammatory demyelinating immunopathology of MS. We now report that SCs expressing green fluorescent protein (GFP-SCs) allografted after disease onset not only survive but also migrate to remyelinate lesions in the inflamed CNS. GFP-SCs were detected more frequently in the parenchyma after direct injection into the spinal cord, than via intra-thecal delivery into the cerebrospinal fluid. In both cases the transplanted cells intermingled with astrocytes in demyelinated lesions, aligned with axons and by twenty one days post transplantation had formed Pzero protein immunoreactive internodes. Strikingly, GFP-SCs transplantation was associated with marked decrease in clinical disease severity in terms of mortality; all GFP-SCs transplanted animals survived whilst 80% of controls died within 40 days of disease
Latonduines A and B, New Alkaloids Isolated from the Marine Sponge Stylissa carteri:??? Structure Elucidation, Synthesis, and Biogenetic Implications
Part of research collaboration results between Fac Mar Fish UNHAS and EOS UBCLatonduines A (6) and B (7), two new alkaloids with unprecedented heterocyclic skeletons, have been isolated from the Indonesian marine sponge Stylissa carteri. The structures of the latonduines were elucidated by analysis of spectroscopic data and confirmed by the total synthesis of latonduine A (6). It is proposed that ornithine is the biogenetic precursor to the aminopyrimidine fragment of the latonduines
Production and characterization of monoclonal antibodies to the extracellular domain of PO
Seven monoclonal antibodies were raised against the immunoglobulin-like extracellular domain of PO (POED), the major protein of peripheral nervous system myelin. Mice were immunized with purified recombinant rat PO-ED. After fusion, 7 clones (POI-P07) recognizing either recombinant, rat, mouse, or human PO-ED were selected by ELlS A and were characterized by Western blot, immunohistochemistry, and a competition assay. Antibodies belonged to the IgG or IgM class, and P04-P07, reacted with PO in fresh-frozen and paraffin-embedded sections of human or rat peripheral nerve, but not with myelin proteins of the central nervous system of either species. Epitope specificity of the antibodies was determined by a competition enzyme-linked immunosorbent assay (ELISA) and a direct ELlS A using short synthetic peptides spanning the entire extracellular domain of PO. These assays showed that POl and P02 exhibiting the same reaction pattern in Western blot and immunohistochemistry reacted with different distant epitopes of PO. Furthermore, the monoclonal antibodies P05 and P06 recognized 2 different epitopes in close proximity within the neuritogenic extracellular sequence of PO. This panel of monoclonal antibodies, each binding to a different epitope of the extracellular domain of PO, will be useful for in vitro and in vivo studies designed to explore the role of PO during myelination and in demyelinating diseases of the peripheral nervous system
Control of atomic decay rates via manipulation of reservoir mode frequencies
We analyse the problem of a two-level atom interacting with a time-dependent
dissipative environment modelled by a bath of reservoir modes. In the model of
this paper the principal features of the reservoir structure remain constant in
time, but the microscopic structure does not. In the context of an atom in a
leaky cavity this corresponds to a fixed cavity and a time-dependent external
bath. In this situation we show that by chirping the reservoir modes
sufficiently fast it is possible to inhibit, or dramatically enhance the decay
of the atomic system, even though the gross reservoir structure is fixed. Thus
it is possible to extract energy from a cavity-atom system faster than the
empty cavity rate. Similar, but less dramatic effects are possible for moderate
chirps where partial trapping of atomic population is also possible.Comment: 12 pages, 9 figure
- …
