645 research outputs found
Lower Bounds for Structuring Unreliable Radio Networks
In this paper, we study lower bounds for randomized solutions to the maximal
independent set (MIS) and connected dominating set (CDS) problems in the dual
graph model of radio networks---a generalization of the standard graph-based
model that now includes unreliable links controlled by an adversary. We begin
by proving that a natural geographic constraint on the network topology is
required to solve these problems efficiently (i.e., in time polylogarthmic in
the network size). We then prove the importance of the assumption that nodes
are provided advance knowledge of their reliable neighbors (i.e, neighbors
connected by reliable links). Combined, these results answer an open question
by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC
2011] are optimal with respect to their dual graph model assumptions. They also
provide insight into what properties of an unreliable network enable efficient
local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of
the International Symposium on Distributed Computing (DISC
Distributed Symmetry Breaking in Hypergraphs
Fundamental local symmetry breaking problems such as Maximal Independent Set
(MIS) and coloring have been recognized as important by the community, and
studied extensively in (standard) graphs. In particular, fast (i.e.,
logarithmic run time) randomized algorithms are well-established for MIS and
-coloring in both the LOCAL and CONGEST distributed computing
models. On the other hand, comparatively much less is known on the complexity
of distributed symmetry breaking in {\em hypergraphs}. In particular, a key
question is whether a fast (randomized) algorithm for MIS exists for
hypergraphs.
In this paper, we study the distributed complexity of symmetry breaking in
hypergraphs by presenting distributed randomized algorithms for a variety of
fundamental problems under a natural distributed computing model for
hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can
be solved in rounds ( is the number of nodes of the
hypergraph) in the LOCAL model. We then present a key result of this paper ---
an -round hypergraph MIS algorithm in
the CONGEST model where is the maximum node degree of the hypergraph
and is any arbitrarily small constant.
To demonstrate the usefulness of hypergraph MIS, we present applications of
our hypergraph algorithm to solving problems in (standard) graphs. In
particular, the hypergraph MIS yields fast distributed algorithms for the {\em
balanced minimal dominating set} problem (left open in Harris et al. [ICALP
2013]) and the {\em minimal connected dominating set problem}. We also present
distributed algorithms for coloring, maximal matching, and maximal clique in
hypergraphs.Comment: Changes from the previous version: More references adde
Exact bounds for distributed graph colouring
We prove exact bounds on the time complexity of distributed graph colouring.
If we are given a directed path that is properly coloured with colours, by
prior work it is known that we can find a proper 3-colouring in communication rounds. We close the gap between upper and
lower bounds: we show that for infinitely many the time complexity is
precisely communication rounds.Comment: 16 pages, 3 figure
Limitations to Frechet's Metric Embedding Method
Frechet's classical isometric embedding argument has evolved to become a
major tool in the study of metric spaces. An important example of a Frechet
embedding is Bourgain's embedding. The authors have recently shown that for
every e>0 any n-point metric space contains a subset of size at least n^(1-e)
which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is
non-Frechet, and the purpose of this note is to show that this is not
coincidental. Specifically, for every e>0, we construct arbitrarily large
n-point metric spaces, such that the distortion of any Frechet embedding into
l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur
A strong direct product theorem for quantum query complexity
We show that quantum query complexity satisfies a strong direct product
theorem. This means that computing copies of a function with less than
times the quantum queries needed to compute one copy of the function implies
that the overall success probability will be exponentially small in . For a
boolean function we also show an XOR lemma---computing the parity of
copies of with less than times the queries needed for one copy implies
that the advantage over random guessing will be exponentially small.
We do this by showing that the multiplicative adversary method, which
inherently satisfies a strong direct product theorem, is always at least as
large as the additive adversary method, which is known to characterize quantum
query complexity.Comment: V2: 19 pages (various additions and improvements, in particular:
improved parameters in the main theorems due to a finer analysis of the
output condition, and addition of an XOR lemma and a threshold direct product
theorem in the boolean case). V3: 19 pages (added grant information
How Long It Takes for an Ordinary Node with an Ordinary ID to Output?
In the context of distributed synchronous computing, processors perform in
rounds, and the time-complexity of a distributed algorithm is classically
defined as the number of rounds before all computing nodes have output. Hence,
this complexity measure captures the running time of the slowest node(s). In
this paper, we are interested in the running time of the ordinary nodes, to be
compared with the running time of the slowest nodes. The node-averaged
time-complexity of a distributed algorithm on a given instance is defined as
the average, taken over every node of the instance, of the number of rounds
before that node output. We compare the node-averaged time-complexity with the
classical one in the standard LOCAL model for distributed network computing. We
show that there can be an exponential gap between the node-averaged
time-complexity and the classical time-complexity, as witnessed by, e.g.,
leader election. Our first main result is a positive one, stating that, in
fact, the two time-complexities behave the same for a large class of problems
on very sparse graphs. In particular, we show that, for LCL problems on cycles,
the node-averaged time complexity is of the same order of magnitude as the
slowest node time-complexity.
In addition, in the LOCAL model, the time-complexity is computed as a worst
case over all possible identity assignments to the nodes of the network. In
this paper, we also investigate the ID-averaged time-complexity, when the
number of rounds is averaged over all possible identity assignments. Our second
main result is that the ID-averaged time-complexity is essentially the same as
the expected time-complexity of randomized algorithms (where the expectation is
taken over all possible random bits used by the nodes, and the number of rounds
is measured for the worst-case identity assignment).
Finally, we study the node-averaged ID-averaged time-complexity.Comment: (Submitted) Journal versio
Locality of not-so-weak coloring
Many graph problems are locally checkable: a solution is globally feasible if
it looks valid in all constant-radius neighborhoods. This idea is formalized in
the concept of locally checkable labelings (LCLs), introduced by Naor and
Stockmeyer (1995). Recently, Chang et al. (2016) showed that in bounded-degree
graphs, every LCL problem belongs to one of the following classes:
- "Easy": solvable in rounds with both deterministic and
randomized distributed algorithms.
- "Hard": requires at least rounds with deterministic and
rounds with randomized distributed algorithms.
Hence for any parameterized LCL problem, when we move from local problems
towards global problems, there is some point at which complexity suddenly jumps
from easy to hard. For example, for vertex coloring in -regular graphs it is
now known that this jump is at precisely colors: coloring with colors
is easy, while coloring with colors is hard.
However, it is currently poorly understood where this jump takes place when
one looks at defective colorings. To study this question, we define -partial
-coloring as follows: nodes are labeled with numbers between and ,
and every node is incident to at least properly colored edges.
It is known that -partial -coloring (a.k.a. weak -coloring) is easy
for any . As our main result, we show that -partial -coloring
becomes hard as soon as , no matter how large a we have.
We also show that this is fundamentally different from -partial
-coloring: no matter which we choose, the problem is always hard
for but it becomes easy when . The same was known previously
for partial -coloring with , but the case of was open
Pseudorandomness for Regular Branching Programs via Fourier Analysis
We present an explicit pseudorandom generator for oblivious, read-once,
permutation branching programs of constant width that can read their input bits
in any order. The seed length is , where is the length of the
branching program. The previous best seed length known for this model was
, which follows as a special case of a generator due to
Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of
for arbitrary branching programs of size ). Our techniques
also give seed length for general oblivious, read-once branching
programs of width , which is incomparable to the results of
Impagliazzo et al.Our pseudorandom generator is similar to the one used by
Gopalan et al. (FOCS 2012) for read-once CNFs, but the analysis is quite
different; ours is based on Fourier analysis of branching programs. In
particular, we show that an oblivious, read-once, regular branching program of
width has Fourier mass at most at level , independent of the
length of the program.Comment: RANDOM 201
FPTAS for Weighted Fibonacci Gates and Its Applications
Fibonacci gate problems have severed as computation primitives to solve other
problems by holographic algorithm and play an important role in the dichotomy
of exact counting for Holant and CSP frameworks. We generalize them to weighted
cases and allow each vertex function to have different parameters, which is a
much boarder family and #P-hard for exactly counting. We design a fully
polynomial-time approximation scheme (FPTAS) for this generalization by
correlation decay technique. This is the first deterministic FPTAS for
approximate counting in the general Holant framework without a degree bound. We
also formally introduce holographic reduction in the study of approximate
counting and these weighted Fibonacci gate problems serve as computation
primitives for approximate counting. Under holographic reduction, we obtain
FPTAS for other Holant problems and spin problems. One important application is
developing an FPTAS for a large range of ferromagnetic two-state spin systems.
This is the first deterministic FPTAS in the ferromagnetic range for two-state
spin systems without a degree bound. Besides these algorithms, we also develop
several new tools and techniques to establish the correlation decay property,
which are applicable in other problems
Computing in Additive Networks with Bounded-Information Codes
This paper studies the theory of the additive wireless network model, in
which the received signal is abstracted as an addition of the transmitted
signals. Our central observation is that the crucial challenge for computing in
this model is not high contention, as assumed previously, but rather
guaranteeing a bounded amount of \emph{information} in each neighborhood per
round, a property that we show is achievable using a new random coding
technique.
Technically, we provide efficient algorithms for fundamental distributed
tasks in additive networks, such as solving various symmetry breaking problems,
approximating network parameters, and solving an \emph{asymmetry revealing}
problem such as computing a maximal input.
The key method used is a novel random coding technique that allows a node to
successfully decode the received information, as long as it does not contain
too many distinct values. We then design our algorithms to produce a limited
amount of information in each neighborhood in order to leverage our enriched
toolbox for computing in additive networks
- …
