research

Locality of not-so-weak coloring

Abstract

Many graph problems are locally checkable: a solution is globally feasible if it looks valid in all constant-radius neighborhoods. This idea is formalized in the concept of locally checkable labelings (LCLs), introduced by Naor and Stockmeyer (1995). Recently, Chang et al. (2016) showed that in bounded-degree graphs, every LCL problem belongs to one of the following classes: - "Easy": solvable in O(logn)O(\log^* n) rounds with both deterministic and randomized distributed algorithms. - "Hard": requires at least Ω(logn)\Omega(\log n) rounds with deterministic and Ω(loglogn)\Omega(\log \log n) rounds with randomized distributed algorithms. Hence for any parameterized LCL problem, when we move from local problems towards global problems, there is some point at which complexity suddenly jumps from easy to hard. For example, for vertex coloring in dd-regular graphs it is now known that this jump is at precisely dd colors: coloring with d+1d+1 colors is easy, while coloring with dd colors is hard. However, it is currently poorly understood where this jump takes place when one looks at defective colorings. To study this question, we define kk-partial cc-coloring as follows: nodes are labeled with numbers between 11 and cc, and every node is incident to at least kk properly colored edges. It is known that 11-partial 22-coloring (a.k.a. weak 22-coloring) is easy for any d1d \ge 1. As our main result, we show that kk-partial 22-coloring becomes hard as soon as k2k \ge 2, no matter how large a dd we have. We also show that this is fundamentally different from kk-partial 33-coloring: no matter which k3k \ge 3 we choose, the problem is always hard for d=kd = k but it becomes easy when dkd \gg k. The same was known previously for partial cc-coloring with c4c \ge 4, but the case of c<4c < 4 was open

    Similar works