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Let f(n) (resp. g(n)) be the largest m such that there is a digraph (resp. a spanning weakly 
connected digraph) on n-vertices and m edges which is a subgraph of every tournament on n- 
vertices. We prove that 

n log2 n--cxn >=f(n) ~_ g(n) ~- n log~ n--c..n loglog n. 

A directed graph  G is an unavoidable subgraph o f  all n-tournaments or, 
simply n-unavoidable, if  every tournament  on n vertices contain san isomorphic  
copy  o f  G, i.e., for each n- tournament  T there exists an edge preserving injection 
o f  the vertices o f  G into the vertices o f  T. The problem o f  showing certain types 
o f  graphs to be n-unavoidable has been the subject o f  several papers, for  example, 
it is known that  every n- tournament  contains a Hamil tonian path ([7]), an anti- 
directed Hamil tonian path ([4]) and a transitive subtournament  on [log2 n] vertices 
([6]). Results o f  this type are also found in [1], [3], and [8]. In this paper  we answer 
the following question: what  is the maximum number  o f  edges that  an n-unavoidable 
subgraph can have?  

Our  graph  theoretic terminology is standard.  For  a vertex v o f  a d igraph 
G=(V,  E)  we let G+(v)={w[(v,  w)EE}. All logari thms are base 2. 

Let f (n )  (resp. g(n)) be the largest m such that  there exists a digraph 
resp. spanmng,  weakly connected diagraph) with m edges that  is n-unavoidable 
subgraph.  Trivially f ( n ) ~ g ( n ) .  Our main resullt is 

Theorem. There exists positive constants c~ and c2 such that fo r  all positi~e inte- 
gers n, 

n Ig n - cl n >= f ( n )  ~ g (n) -~ n ig n - c2 n lg lg n. 

Proof.  We start with the left inequality. Let V = { 1 ,  . . . ,n} and let H be an 

n-unavoidable digraph on V with m edges. There are 2 (~) labeled n- tournaments  
on V, each of  which contains O(H) where 0 is a permutat ion on V. For  fixed 0, 
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exactly 2 (~)-" labeled tournaments on V contain O(H). Hence, 

2 (~) ~ n !. 2 (~) -"  
SO 

m < = l g n ! ~ n l g n - - c l n ,  
for an appropriate Cl. 

To prove the inequality on the right we proceed by a sequence of propositions. 
They provide an inductive construction for a spanning weakly connected n-unavoid- 
able digraph with n Ig n - c 2 n  lg lg n edges. 

For  positive integers k and r we define D(k, r) to be the complete bi- 
partitite graph between vertex sets V1 and V~ of sizes k and r respectively, 
with every edge directed from vl to vz. 

Proposition 1. I f  r<=(n+ l)/2k--1 then D(k, r) is n-unavoidable digraph. 

Proof. Let T be any n-tournament; we show by induction on k that the specified 
n - 1  

graphs are subgraphs of  T. I f  k = 1 then r ~ , so let V~ consist of  some vertex 
n - -  1 2 

v of  out degree at least ~- and V2 b e a  subset of  G+(v) of size r. For  k > l  

and r<=(n+ 1)/2 k -  1 the numbers k -  1, 2 r -  1 meet the conditions of  the induction 
hypothesis so T contains the specified bipartite graph on vertex sets V~" and V~', 
with size k - 1  and 2 r +  1. Choose a vertex wCV~" having out degree at least 
r in the subtournament spanned by Vz' and let VI=V~'U{w} and Vz be any 
r vertices in V2"AG+(w). All edges in T point from V~ to V2 so the required 
subgraph can be constructed. II 

Proposition 2. There exists a constant c3>0 such that for all positive integers n. 

f (n )  >-_ n Ig n - c 3 n  lg lg n 

Proof. Let h ( n ) = n l g n - c  3 n l g l g n  (leaving c3 unspecified) and let k and r 
be integers satisfying the hypothesis of  Proposition 1. Every n-tournament contains 
D(r), which has kr edges and, disjoint f rom this, a maximum ( n - k - r ) - u n a v o i d a b l e  
subgraph since the remaining vertices span an ( n - k - r ) - t o u r n a m e n t .  Thus 

f ( n )  >= kr +f (n  - k -- r). 

It  suffices to show that k, r and c3 can be chosen so that, for n sufficiently large 

h ( n ) - h ( n - k - r )  <-_ kr. 

k + r  
Using l g ( n - k - r ) > - l g n  - n - k  r lge  for n>-k+r we have by routine 

computat ion:  
h (n) - h (n - k -  r) ~ (k + r) (Ig n + lg e -  c a lg lg n) 

Choose k = llg n - 2  lg lg nJ and r = [lg z nJ-- 1. I t  is easily checked that k 
and r satisfy the condition on Proposition 1. Further 

kr >-_ (lg n - 2  lg lg n - 1)(lg 2 n - 2 )  

=> Ig 3 n - 2 1 g l g  n lg ~ n - l g  2 n - 2 1 g  n 

=> (k +r ) ( lg  n + l g  e - c a  lg lg n), 
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if c3 is chosen bigger than 2 and n is large enough, Combining this with the previous 
inequality completes the proof. | 

Proposition 3. Every n-tournament has a vertex v and a partition V~, ~ of the 

remaining vertices with I~1 = - - ~ /  

vl~a+(w) for any wEV~. 

Proof. Let T be an n-tournament and choose v, V1, 1/2 so that IV1]= [ - -~ [ ,  

I V 2 I = [ - ~ [ ,  VlC=G+(v) and the size of V2'={wEV~: V1 q~G+(w)} is maximum. 

We need to show that V~'=V2. Suppose not. Construct a set I/1' by selecting, 
for each wCVz', a vertex x in I/i so that xCG+(w). Since IV2"[<[V2I we have 
Ivl"l<LvlI. Choose u~V~-V2" and xCVl-k~'. I f  (v,u) is an arc of  T then 
exchanging u and x increases I~'1 and if (u, v) is in T then exchanging u 
with v and then v with x also increases IWI, contradicting the maximality of 
~ ' s o  W = ~ .  II 

Proposition 4. 

1o+11 

Proof. Let G' be a graph on vertex set V/UVz'U{v',w'} where 

w,t  fo.ow . is a maximum 

([._l]) ~ - 1  -unavoidable digraph G~, and that spanned by K' is a maximum 

spanning connected ~ -unavoidable digraph G2. In addition G' has edges 

(V'~ '\  ' W/, (V, y ')  for each yEV/ and (w',x') for exactly one x'cV2' (see Figure l). 

ln+'l  G" is connected and spanning and has ~ ,  

edges; we now show that G' is n-unavoidable. 
Let T be any n-tournament and choose v, I/1, V2 according to Proposition 3. 

The subtournament of T spanned by V2 contains a copy G2 of G~; let xEV~ 
be the vertex corresponding to x'EV2". Since V~¢G+(x'), there is a vertex w~V~ 
with (w,x) in T. The subtournament on V~-{w} contains a copy G1 of a~. 

V ~ 

\',. V~ t l 

Fig. 1 
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Taking Ga and G., together with the edges f rom v to //1 and (w, x)  yields a copy 
G o f  G' .  II 

Using induction and Proposi t ion 4 we can now prove the last inequality o f  
the theorem. By Proposit ions 4 and 2 and the induction hypothesis 

> ( _ ~ )  lg ( _ ~ )  __ % ( n _ ~ }  lg lg ( _ ~ )  n - 3  n - - 3  

>-(n-3)lg(n-3)-(n-a)-(c~+c~)(~llglg(~ ) 
=> n Ig n - c e n  lg lg  n 

as long as c2 is any number  greater than % and n is sufficiently large. This 
completes the p r o o f  o f  the theorem. | | 

Remark.  In  a for thcoming paper we investigate different problems concerning 
n-unavoidable graphs. Some classes o f  rooted directed trees that  are or are not  
unavoidable are identified. In particular we consider the class o f  claws, rooted 
digraphs in which each branch is a path. We also produce,  for each n, a spanning 
rooted digraph of  small depth that  is n-unavoidable. 
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