LARGEST DIGRAPHS CONTAINED IN ALL n-TOURNAMENTS

N. LINIAL*, M. SAKS** and VERA T. SÓS
Received 7 October 1981

Let $f(n)$ (resp. $g(n)$) be the largest m such that there is a digraph (resp. a spanning weakly connected digraph) on n-vertices and m edges which is a subgraph of every tournament on n vertices. We prove that

$$
n \log _{2} n-c_{1} n \geqq f(n) \geqq g(n) \geqq n \log _{2} n-c_{2} n \log \log n .
$$

A directed graph G is an unavoidable subgraph of all n-tournaments or, simply n-unavoidable, if every tournament on n vertices contain san isomorphic copy of G, i.e., for each n-tournament T there exists an edge preserving injection of the vertices of G into the vertices of T. The problem of showing certain types of graphs to be n-unavoidable has been the subject of several papers, for example, it is known that every n-tournament contains a Hamiltonian path ([7]), an antidirected Hamiltonian path ([4]) and a transitive subtournament on $\left[\log _{2} n\right]$ vertices ([6]). Results of this type are also found in [1], [3], and [8]. In this paper we answer the following question: what is the maximum number of edges that an n-unavoidable subgraph can have?

Our graph theoretic terminology is standard. For a vertex v of a digraph $G=(V, E)$ we let $G^{+}(v)=\{w \mid\langle v, w\rangle \in E\}$. All logarithms are base 2.

Let $f(n)$ (resp. $g(n)$) be the largest m such that there exists a digraph resp. spanning, weakly connected diagraph) with m edges that is n-unavoidable subgraph. Trivially $f(n) \geqq g(n)$. Our main resullt is
Theorem. There exists positive constants c_{1} and c_{2} such that for all positive integers n,

$$
n \lg n-c_{1} n \geqq f(n) \geqq g(n) \geqq n \lg n-c_{2} n \lg \lg n .
$$

Proof. We start with the left inequality. Let $V=\{1, \ldots, n\}$ and let H be an n-unavoidable digraph on V with m edges. There are $2^{\left(\frac{n}{2}\right)}$ labeled n-tournaments on V, each of which contains $\theta(H)$ where θ is a permutation on V. For fixed θ,

[^0]exactly $2^{\left(\frac{(}{2}\right)-m}$ labeled tournaments on V contain $\theta(H)$. Hence,
$$
2^{\binom{n}{2}} \leqq n!\cdot 2^{\binom{n}{2}-m}
$$
so
$$
m \leqq \lg n!\leqq n \lg n-c_{1} n,
$$
for an appropriate c_{1}.
To prove the inequality on the right we proceed by a sequence of propositions. They provide an inductive construction for a spanning weakly connected n-unavoidable digraph with $n \lg n-c_{2} n \lg \lg n$ edges.

For positive integers k and r we define $D(k, r)$ to be the complete bipartitite graph between vertex sets V_{1} and V_{2} of sizes k and r respectively, with every edge directed from v_{1} to v_{2}.

Proposition 1. If $r \leqq(n+1) / 2^{k}-1$ then $D(k, r)$ is n-unavoidable digraph.
Proof. Let T be any n-tournament; we show by induction on k that the specified graphs are subgraphs of T. If $k=1$ then $r \leqq \frac{n-1}{2}$, so let V_{1} consist of some vertex v of out degree at least $\frac{n-1}{2}$ and V_{2} be a subset of $G^{+}(v)$ of size r. For $k>1$ and $r \leqq(n+1) / 2^{k}-1$ the numbers $k-1,2 r-1$ meet the conditions of the induction hypothesis so T contains the specified bipartite graph on vertex sets V_{1}^{\prime} and V_{2}^{\prime}, with size $k-1$ and $2 r+1$. Choose a vertex $w \in V_{2}^{\prime}$ having out degree at least r in the subtournament spanned by V_{2}^{\prime} and let $V_{1}=V_{1}^{\prime} \cup\{w\}$ and V_{2} be any r vertices in $V_{2}^{\prime} \cap G^{+}(w)$. All edges in T point from V_{1} to V_{2} so the required subgraph can be constructed.

Proposition 2. There exists a constant $c_{3}>0$ such that for all positive integers n.

$$
f(n) \supseteqq n \lg n-c_{3} n \lg \lg n
$$

Proof. Let $h(n)=n \lg n-c_{3} n \lg \lg n$ (leaving c_{3} unspecified) and let k and r be integers satisfying the hypothesis of Proposition 1. Every n-tournament contains $D(r)$, which has $k r$ edges and, disjoint from this, a maximum ($n-k-r$)-unavoidable subgraph since the remaining vertices span an $(n-k-r)$-tournament. Thus

$$
f(n) \geqq k r+f(n-k-r) .
$$

It suffices to show that k, r and c_{3} can be chosen so that, for n sufficiently large

$$
h(n)-h(n-k-r) \leqq k r .
$$

Using $\lg (n-k-r) \geqq \lg n-\frac{k+r}{n-k-r} \lg e$ for $n \geqq k+r$ we have by routine computation:

$$
h(n)-h(n-k-r) \leqq(k+r)\left(\lg n+\lg e-c_{3} \lg \lg n\right)
$$

Choose $k=\lfloor\lg n-2 \lg \lg n\rfloor$ and $r=\left\lfloor\lg ^{2} n\right\rfloor-1$. It is easily checked that k and r satisfy the condition on Proposition 1. Further

$$
\begin{aligned}
k r & \geqq(\lg n-2 \lg \lg n-1)\left(\lg ^{2} n-2\right) \\
& \geqq \lg ^{3} n-2 \lg \lg n \lg ^{2} n-\lg ^{2} n-2 \lg n \\
& \geqq(k+r)\left(\lg n+\lg e-c_{3} \lg \lg n\right),
\end{aligned}
$$

if c_{3} is chosen bigger than 2 and n is large enough, Combining this with the previous inequality completes the proof.
Proposition 3. Every n-tournament has a vertex v and a partition V_{1}, V_{2} of the remaining vertices with $\left|V_{1}\right|=\left\lceil\frac{n-1}{2}\right\rceil$ and $\left|V_{2}\right|=\left\lfloor\frac{n-1}{2}\right\rceil$, so that $V_{1} \subseteq G^{+}(v)$ but $V_{1} \notin G^{+}(w)$ for any $w \in V_{2}$.
Proof. Let T be an n-tournament and choose v, V_{1}, V_{2} so that $\left|V_{1}\right|=\left\lceil\frac{n-1}{2}\right\rceil$, $\left|V_{2}\right|=\left[\frac{n-1}{2}\right\rfloor, V_{1} \subseteq G^{+}(v)$ and the size of $V_{2}^{\prime}=\left\{w \in V_{2}: V_{1} \nsubseteq G^{+}(w)\right\}$ is maximum. We need to show that $V_{2}^{\prime}=V_{2}$. Suppose not. Construct a set V_{1}^{\prime} by selecting, for each $w \in V_{2}^{\prime}$, a vertex x in V_{1} so that $x \notin G^{+}(w)$. Since $\left|V_{2}^{\prime}\right|<\left|V_{2}\right|$ we have $\left|V_{1}^{\prime}\right|<\left|V_{1}\right|$. Choose $u \in V_{2}-V_{2}^{\prime}$ and $x \in V_{1}-V_{2}^{\prime}$. If (v, u) is an arc of T then exchanging u and x increases $\left|V_{2}^{\prime}\right|$ and if (u, v) is in T then exchanging u with v and then v with x also increases $\left|V_{2}^{\prime}\right|$, contradicting the maximality of V_{2}^{\prime} so $V_{2}^{\prime}=V_{2}$.

Proposition 4.

$$
g(n) \geqq f\left(\left\lceil\frac{n-1}{2}\right\rceil-1\right)+g\left(\left\lfloor\frac{n-1}{2}\right\rceil\right)+\left\lceil\frac{n+1}{2}\right\rceil .
$$

Proof. Let G^{\prime} be a graph on vertex set $V_{1}^{\prime} \cup V_{2}^{\prime} \cup\left\{v^{\prime}, w^{\prime}\right\}$ where $\left|V_{1}^{\prime}\right|=\left\lceil\frac{n-1}{2}\right\rceil-1$, $\left|V_{2}^{\prime}\right|=\left\lfloor\frac{n-1}{2}\right\rfloor$, with edges as follows. The subgraph spanned by V_{1}^{\prime} is a maximum $\left(\left[\frac{n-1}{2}\right]-1\right)$-unavoidable digraph G_{1}^{\prime}, and that spanned by V_{2}^{\prime} is a maximum spanning connected $\left[\frac{n-1}{2}\right]$-unavoidable digraph G_{2}^{\prime}. In addition G^{\prime} has edges $\left\langle v^{\prime}, w^{\prime}\right\rangle,\left\langle v^{\prime}, y^{\prime}\right\rangle$ for each $y \in V_{1}^{\prime}$ and $\left\langle w^{\prime}, x^{\prime}\right\rangle$ for exactly one $x^{\prime} \in V_{2}^{\prime}$ (see Figure 1).
G^{\prime} is connected and spanning and has $f\left(\left\lceil\frac{n-1}{2}\right\rceil-1\right)+g\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right)+\left\lceil\frac{n+1}{2}\right\rceil$ edges; we now show that G^{\prime} is n-unavoidable.

Let T be any n-tournament and choose v, V_{1}, V_{2} according to Proposition 3. The subtournament of T spanned by V_{2} contains a copy G_{2} of G_{2}^{\prime}; let $x \in V_{2}$ be the vertex corresponding to $x^{\prime} \in V_{2}^{\prime}$. Since $V_{1} \nsubseteq G^{+}\left(x^{\prime}\right)$, there is a vertex $w \in V_{1}$ with $\langle w, x\rangle$ in T. The subtournament on $V_{1}-\{w\}$ contains a copy G_{1} of G_{1}^{\prime}.

Fig. 1

Taking G_{1} and G_{2} together with the edges from v to V_{1} and $\langle w, x\rangle$ yields a copy G of G^{\prime}.

Using induction and Proposition 4 we can now prove the last inequality of the theorem. By Propositions 4 and 2 and the induction hypothesis

$$
\begin{aligned}
g(n) & \geqq f\left(\frac{n-3}{2}\right)+g\left(\frac{n-3}{2}\right) \\
& \geqq\left(\frac{n-3}{2}\right) \lg \left(\frac{n-3}{2}\right)-c_{3}\left(\frac{n-3}{2}\right) \lg \lg \left(\frac{n-3}{2}\right)+\frac{n-3}{2} \lg \left(\frac{n-3}{2}\right)-c_{2} \lg \lg \left(\frac{n-3}{2}\right) \\
& \geqq(n-3) \lg (n-3)-(n-3)-\left(c_{3}+c_{2}\right)\left(\frac{n-3}{2}\right) \lg \lg \left(\frac{n-3}{2}\right) \\
& \geqq n \lg n-c_{2} n \lg \lg n
\end{aligned}
$$

as long as c_{2} is any number greater than c_{3} and n is sufficiently large. This completes the proof of the theorem.
Remark. In a forthcoming paper we investigate different problems concerning n-unavoidable graphs. Some classes of rooted directed trees that are or are not unavoidable are identified. In particular we consider the class of claws, rooted digraphs in which each branch is a path. We also produce, for each n, a spanning rooted digraph of small depth that is n-unavoidable.

References

[1] B. Alspach and M. Rosenfeld, Realization of certain generalized paths in tournaments, Diser. Math. 34 199-202.
[2] P. Erdós and L. Moser, On the representation of directed graphs as unions of orderings, Publ. Math. Inst. Hungar. Acad. Sci. 9 (1964), 125-132 .
[3] R. Forcade, Parity of paths and circuits in tournaments, Discr. Math. 6 (1973), 115-118.
[4] B. Grünbaum, Antidirected Hamiltonian Paths in tournaments, J. Combinatorial Theory (B) 11 (1971), 249-257.
[5] H. g. Landau, On dominance relations and the structure of animal societies, III; the condition for a score structure, Bull. Math. Biophys. 15 (1955), 143-148.
[6] J. W. Moon, Topics on tournaments, Holt, Rinehart and Winston, New York, 1968.
[7] L. Réder, Ein Kombinatorischer Satz, Acta Sci. Math. (Szeged) 7 (1934). 39-43.
[8] M. Rosenfeld, Antidirected Hamiltonian Circuits in tournaments, J. Combinatorial Theory (B) 16 (1974), 234-242.
[9] M. Saks and V. T. Sós, On unavoidable subgraphs of tournaments, to appear.

N. Linial

Institute of Mathematics and Computer Science
Hebrew University, Jerusalem 91904, Israel
M. Saks

Department of Mathematics, Rutgers University
New Brunswick, N. J. 08903, U.S.A.
Vera T. Sós
Department of Analysis I., Eötvös University
Budapest, Hungary, H-1088

[^0]: * Supported by the Chaim Weizman Postdoctoral Fellowship.
 ** Supported in part by NSF under grant No. MCS-8102448.
 AMS subject classification (1980): 05 C 20,05 C 35,05 C 55

