Frechet's classical isometric embedding argument has evolved to become a
major tool in the study of metric spaces. An important example of a Frechet
embedding is Bourgain's embedding. The authors have recently shown that for
every e>0 any n-point metric space contains a subset of size at least n^(1-e)
which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is
non-Frechet, and the purpose of this note is to show that this is not
coincidental. Specifically, for every e>0, we construct arbitrarily large
n-point metric spaces, such that the distortion of any Frechet embedding into
l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur