242 research outputs found

    THE COMPARISON OF DIFFERENT ELASTIC TENSION OF KINESIO TAPING ON GASTROCNEMIUS MUSCLE ACTIVATION

    Get PDF
    The purpose of this study was to compare the effect of different elastic tension of Kinesio taping on gastrocnemius muscle activation. Thirty-seven healthy athletes was recruited and randomly divided into three groups: Elastic tension 0% (N = 13), 10% (N = 12), and 20% (N = 12). All athletes were applied Kinesio taping on gastrocnemius muscle in 3 different elastic tape tensions. The wireless electromyography was used to assess the gastrocnemius muscle activation before and after applied Kinesio taping while jogging on treadmill. The results showed that a significant interaction between different elastic tape tension and pre-post taping applied (

    Anticancer Effects of Salvia miltiorrhiza

    Get PDF
    Researchers have reported significant effects from Danshen (Salvia miltiorrhiza) in terms of inhibiting tumor cell proliferation and promoting apoptosis in breast cancer, hepatocellular carcinomas, promyelocytic leukemia, and clear cell ovary carcinomas. Here we report our data indicating that Danshen extracts, especially alcohol extract, significantly inhibited the proliferation of the human oral squamous carcinoma (OSCC) cell lines HSC-3 and OC-2. We also observed that Danshen alcohol extract activated the caspase-3 apoptosis executor by impeding members of the inhibitor of apoptosis (IAP) family, but not by regulating the Bcl-2-triggered mitochondrial pathway in OSCC cells. Our data also indicate that the extract exerted promising effects in vivo, with HSC-3 tumor xenograft growth being suppressed by 40% and 69% following treatment with Danshen alcohol extract at 50 and 100 mg/kg, respectively, for 34 days. Combined, our results indicate appreciable anticancer activity and significant potential for Danshen alcohol extract as a natural antioxidant and herbal human oral cancer chemopreventive drug

    Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction-induced memory enhancement

    Get PDF
    Dietary restriction (DR; sometimes called calorie restriction) has profound beneficial effects on physiological, psychological, and behavioral outcomes in animals and in humans. We have explored the molecular mechanism of DR-induced memory enhancement and demonstrate that dietary tryptophan-a precursor amino acid for serotonin biosynthesis in the brain-and serotonin receptor 5-hydroxytryptamine receptor 6 (HTR6) are crucial in mediating this process. We show that HTR6 inactivation diminishes DR-induced neurological alterations, including reduced dendritic complexity, increased spine density, and enhanced long-term potentiation (LTP) in hippocampal neurons. Moreover, we find that HTR6-mediated mechanistic target of rapamycin complex 1 (mTORC1) signaling is involved in DR-induced memory improvement. Our results suggest that the HTR6-mediated mTORC1 pathway may function as a nutrient sensor in hippocampal neurons to couple memory performance to dietary intake

    滨螺卓越的耐高温能力,温度耐受上限竟高达55℃——潮间带 Echinolittorina 属滨螺细胞质苹果酸脱氢酶高温耐受机制的研究

    Get PDF
    研究团队以分布于高潮间带,具有高耐热性的两种滨螺为研究对象,通过生理生化学实验及计算机模拟手段,发现耐热的软体动物通过增强代谢关键酶的作用,避免了在高温条件下的解链;研究团队还提出,局部柔性的增长使得酶在低温条件下能够发挥其催化功能,同时能在极端高温条件下,起到稳定蛋白质的作用,确保了蛋白质功能的维持。这些发现对于查明环境温度对生物分布的影响及其机制,预测气候变暖的生态学效应将具有重要意义。 滨螺广泛分布于潮间带高潮区,是潮间带垂直分布区划分的标志性物种。塔结节滨螺(Echinolittorina malaccana)和粒结节滨螺(E. radiata)是我国岩相潮间带高潮区常见物种,其温度耐受上限高达 55-60°C。董云伟教授团队与美国斯坦福大学 George Somero 教授,以及华侨大学张光亚教授团队合作,进行了一系列研究,探索了高热耐受性滨螺在极端高温条件下,仍旧保持体内蛋白质微结构的完整、功能的维持的奥妙所在。【Abstract】Snails of the genus Echinolittorina are among the most heat-tolerant animals; they experience average body temperatures near 41–44℃ in summer and withstand temperatures up to at least 55℃. Here, we demonstrate that heat stability of function (indexed by the Michaelis–Menten constant of the cofactor NADH, KMNADH) and structure (indexed by rate of denaturation) of cytosolic malate dehydrogenases (cMDHs) of two congeners (E. malaccana and E. radiata) exceeds values previously found for orthologs of this protein from less thermophilic species. The ortholog of E. malaccana is more heat stable than that of E. radiata, in keeping with the congeners' thermal environments. Only two inter-congener differences in amino acid sequence in these 332 residue proteins were identified. In both cases (positions 48 and 114), a glycine in the E. malaccana ortholog is replaced by a serine in the E. radiata protein. To explore the relationship between structure and function and to characterize how amino acid substitutions alter stability of different regions of the enzyme, we used molecular dynamics simulation methods. These computational methods allow determination of thermal effects on fine-scale movements of protein components, for example, by estimating the root mean square deviation in atom position over time and the root mean square fluctuation for individual residues. The minor changes in amino acid sequence favor temperature-adaptive change in flexibility of regions in and around the active sites. Interspecific differences in effects of temperature on fine-scale protein movements are consistent with the differences in thermal effects on binding and rates of heat denaturation.This research was substantially supported by grants from National Natural Science Foundation of China (41476115), Program for New Century Excellent Talents of Ministry of Education, China, Nature Science Foundation for Distinguished Young Scholars of Fujian Province (2017J07003), China and the State Key Laboratory of Marine Environmental Science Internal Program, Xiamen University (MELRI1501)

    Corrigendum to “Anticancer Effects of Salvia miltiorrhiza

    Get PDF
    Researchers have reported significant effects from Danshen (Salvia miltiorrhiza) in terms of inhibiting tumor cell proliferation and promoting apoptosis in breast cancer, hepatocellular carcinomas, promyelocytic leukemia, and clear cell ovary carcinomas. Here we report our data indicating that Danshen extracts, especially alcohol extract, significantly inhibited the proliferation of the human oral squamous carcinoma (OSCC) cell lines HSC-3 and OC-2. We also observed that Danshen alcohol extract activated the caspase-3 apoptosis executor by impeding members of the inhibitor of apoptosis (IAP) family, but not by regulating the Bcl-2-triggered mitochondrial pathway in OSCC cells. Our data also indicate that the extract exerted promising effects in vivo, with HSC-3 tumor xenograft growth being suppressed by 40% and 69% following treatment with Danshen alcohol extract at 50 and 100 mg/kg, respectively, for 34 days. Combined, our results indicate appreciable anticancer activity and significant potential for Danshen alcohol extract as a natural antioxidant and herbal human oral cancer chemopreventive drug

    SIRT1 Activation by a c-MYC Oncogenic Network Promotes the Maintenance and Drug Resistance of Human FLT3-ITD Acute Myeloid Leukemia Stem Cells

    Get PDF
    SummaryThe FLT3-ITD mutation is frequently observed in acute myeloid leukemia (AML) and is associated with poor prognosis. In such patients, FLT3 tyrosine kinase inhibitors (TKIs) are only partially effective and do not eliminate the leukemia stem cells (LSCs) that are assumed to be the source of treatment failure. Here, we show that the NAD-dependent SIRT1 deacetylase is selectively overexpressed in primary human FLT3-ITD AML LSCs. This SIRT1 overexpression is related to enhanced expression of the USP22 deubiquitinase induced by c-MYC, leading to reduced SIRT1 ubiquitination and enhanced stability. Inhibition of SIRT1 expression or activity reduced the growth of FLT3-ITD AML LSCs and significantly enhanced TKI-mediated killing of the cells. Therefore, these results identify a c-MYC-related network that enhances SIRT1 protein expression in human FLT3-ITD AML LSCs and contributes to their maintenance. Inhibition of this oncogenic network could be an attractive approach for targeting FLT3-ITD AML LSCs to improve treatment outcomes

    The design of a thermoresponsive surface for the continuous culture of human pluripotent stem cells

    Get PDF
    Commonly, stem cell culture is based on batch-type culture, which is laborious and expensive. We continuously cultured human pluripotent stem cells (hPSCs) on thermoresponsive dish surfaces, where hPSCs were partially detached on the same thermoresponsive dish by decreasing the temperature of the thermoresponsive dish to be below the lower critical solution temperature for only 30 min. Then, the remaining cells were continuously cultured in fresh culture medium, and the detached stem cells were harvested in the exchanged culture medium. hPSCs were continuously cultured for ten cycles on the thermoresponsive dish surface, which was prepared by coating the surface with poly(N-isopropylacrylamide-co-styrene) and oligovitronectin-grafted poly(acrylic acid-co-styrene) or recombinant vitronectin for hPSC binding sites to maintain hPSC pluripotency. After ten cycles of continuous culture on the thermoresponsive dish surface, the detached cells expressed pluripotency proteins and had the ability to differentiate into cells derived from the three germ layers in vitro and in vivo. Furthermore, the detached cells differentiated into specific cell lineages, such as cardiomyocytes, with high efficiency

    YC-1 [3-(5Ј-Hydroxymethyl-2Ј-furyl)-1-benzyl Indazole] Inhibits Neointima Formation in Balloon-Injured Rat Carotid through Suppression of Expressions and Activities of Matrix Metalloproteinases 2 and 9

    Get PDF
    ABSTRACT Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, and postrevascularization production of vascular smooth muscle cells may play key roles in development of arterial restenosis. We investigated the inhibitory effect of 3-(5Ј-hydroxymethyl-2Ј-furyl)-1-benzyl indazole (YC-1), a benzyl indazole compound, on MMP-2 and MMP-9 activity in a ballooninjury rat carotid artery model. Injury was induced by inserting a balloon catheter through the common carotid artery; after 14 days, histopathological analysis using immunostaining and Western blotting revealed significant restenosis with neointimal formation that was associated with enhanced protein expression of MMP-2 and MMP-9. However, these effects were dosedependently reduced by orally administered YC-1 (1-10 mg/ kg). In addition, gelatin zymography demonstrated that increased MMP-2 and MMP-9 activity was diminished by YC-1 treatment. On the other hand, YC-1 inhibited hydrolysis of the fluorogenic quenching substrate Mca-Pro-Leu-Gly-Leu-DpaAla-Arg-NH 2 by recombinant MMP-2 and MMP-9 with IC 50 values ϭ 2.07 and 8.20 M, respectively. Reverse transcription-polymerase chain reaction analysis of MMP-2 and MMP-9 mRNA revealed that YC-1 significantly inhibited mRNA levels of MMPs. Finally, for the YC-1 treatment group, we did not observe elevation of cGMP levels using enzyme-linked immunosorbent assay, suggesting that YC-1 inhibition of neointimal formation is not through a cGMP-elevating pathway. These data show YC-1 suppression of neointimal formation is dependent on its influence on MMP-2 and MMP-9 protein, mRNA expression, and activity, but not through a cGMP-elevating effect. YC-1 shows therapeutic potential for treatment of restenosis after angioplasty. During the past 20 years, one focus of cardiovascular pharmaceutical research has been the development of drugs that inhibit intimal hyperplasia. Despite many attempts, no clinical trial has proven that there is an effective pharmacological solution to the problem Matrix metalloproteinases (MMPs) are a family of structurally related zinc-endopeptidases that degrade components of extracellular matrix associated with vascular remodeling during vascular injury-induced neointima formatio

    Evaluation of an Epitypified Ophiocordyceps formosana

    Get PDF
    The substantial merit of Cordyceps s.l. spp. in terms of medicinal benefits is largely appreciated. Nevertheless, only few studies have characterized and examined the clinical complications of the use of health tonics containing these species. Here, we epitypified C. formosana isolates that were collected and characterized as Ophiocordyceps formosana based on morphological characteristics, molecular phylogenetic analyses, and metabolite profiling. Thus, we renamed and transferred C. formosana to the new protologue Ophiocordyceps formosana (Kobayasi & Shimizu) Wang, Tsai, Tzean & Shen comb. nov. Additionally, the pharmacological potential of O. formosana was evaluated based on the hot-water extract from its mycelium. The relative amounts of the known bioactive ingredients that are unique to Cordyceps s.l. species in O. formosana were found to be similar to the amounts in O. sinensis and C. militaris, indicating the potential applicability of O. formosana for pharmacological uses. Additionally, we found that O. formosana exhibited antioxidation activities in vitro and in vivo that were similar to those of O. sinensis and C. militaris. Furthermore, O. formosana also displayed conspicuously effective antitumor activity compared with the tested Cordyceps s.l. species. Intrinsically, O. formosana exhibited less toxicity than the other Cordyceps species. Together, our data suggest that the metabolites of O. formosana may play active roles in complementary medicine

    Design, Synthesis, Mechanisms of Action, and Toxicity of Novel 20( S )-Sulfonylamidine Derivatives of Camptothecin as Potent Antitumor Agents

    Get PDF
    Twelve novel 20-sulfonylamidine derivatives (9a–9l) of camptothecin (1) were synthesized via a Cu-catalyzed three-component reaction. They showed similar or superior cytotoxicity compared with that of irinotecan (3) against A-549, DU-145, KB, and multidrug-resistant (MDR) KBvin tumor cell lines. Compound 9a demonstrated better cytotoxicity against MDR cells compared with that of 1 and 3. Mechanistically, 9a induced significant DNA damage by selectively inhibiting Topoisomerase (Topo) I and activating the ATM/Chk related DNA damage-response pathway. In xenograft models, 9a demonstrated significant activity without overt adverse effects at 5 and 10 mg/kg, comparable to 3 at 100 mg/kg. Notably, 9a at 300 mg/kg (i.p.) showed no overt toxicity in contrast to 1 (LD50 56.2 mg/kg, i.p.) and 3 (LD50 177.5 mg/kg, i.p.). Intact 9a inhibited Topo I activity in a cell-free assay in a manner similar to that of 1, confirming that 9a is a new class of Topo I inhibitor. 20-Sulfonylamidine 1-derivative 9a merits development as an anticancer clinical trial candidate
    corecore