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SUMMARY

The FLT3-ITD mutation is frequently observed in
acute myeloid leukemia (AML) and is associated
with poor prognosis. In such patients, FLT3 tyrosine
kinase inhibitors (TKIs) are only partially effective and
do not eliminate the leukemia stem cells (LSCs) that
are assumed to be the source of treatment failure.
Here, we show that the NAD-dependent SIRT1 de-
acetylase is selectively overexpressed in primary
human FLT3-ITD AML LSCs. This SIRT1 overexpres-
sion is related to enhanced expression of the USP22
deubiquitinase induced by c-MYC, leading to
reducedSIRT1 ubiquitination and enhanced stability.
Inhibition of SIRT1 expression or activity reduced the
growth of FLT3-ITD AML LSCs and significantly
enhanced TKI-mediated killing of the cells. There-
fore, these results identify a c-MYC-related network
that enhances SIRT1 protein expression in human
FLT3-ITD AML LSCs and contributes to their mainte-
nance. Inhibition of this oncogenic network could be
an attractive approach for targeting FLT3-ITD AML
LSCs to improve treatment outcomes.

INTRODUCTION

Acute myeloid leukemia (AML) is organized as a hierarchy with

small populations of self-renewing leukemic stem cells (LSCs)

generating the bulk of leukemic cells (Patel et al., 2012). LSCs

can resist elimination by conventional therapy and persist as

potential sources of relapse. Several studies indicate that LSC

gene expression signatures are correlated with poor prognosis

in AML patients (Eppert et al., 2011). Better understanding of

LSC regulation is critical for developing improved therapies

against AML.
Ce
Internal tandem duplications (ITDs) in the Fms-like tyrosine ki-

nase (FLT3) are seen in 25%–30% of AML patients, constituting

the most commonly observed mutation in AML (Kindler et al.,

2010). FLT3-ITD is associated with reduced length of remission

and survival, consistent with lack of elimination of LSC (Kindler

et al., 2010; Horton and Huntly, 2012). The ITD mutation results

in constitutive FLT3 activation and altered downstream signaling

compared to wild-type (WT) FLT3 (Nakao et al., 1996). In animal

models, expression of FLT3-ITD alone results in a myeloprolifer-

ative disorder, and cooperating mutations are required for AML

development (Chu et al., 2012). Several small molecule FLT3

tyrosine kinase inhibitors (TKIs), such as quizartinib (AC220),

are being examined (Levis, 2011; Smith et al., 2012). However,

FLT3-TKIs only partially inhibit human FLT3-ITD AML LSCs

and demonstrate modest clinical activity (Horton and Huntly,

2012; Levis, 2011; Smith et al., 2012). Resistance can emerge

during treatment through point mutations that interfere with

drug binding (Smith et al., 2012). Better understanding of molec-

ular events contributing to the drug resistance of FLT3-ITD LSC

would aid development of approaches to achieve sustained

remissions.

The NAD-dependent deacetylase sirtuin 1 (SIRT1) modulates

the activity of several intracellular proteins, including p53 (Vaziri

et al., 2001). SIRT1 regulates numerous cellular processes

including aging, DNA repair, cell cycle, metabolism, and survival

(Brooks and Gu, 2009). SIRT1 plays an important role in main-

taining self-renewal and differentiation of murine embryonic

stem cells and hematopoietic stem cells (HSCs), especially

under conditions of stress (Han et al., 2008; Ou et al., 2011).

Several studies indicate a pathogenic role for SIRT1 in solid

tumors and leukemias (Brooks and Gu, 2009). However, other

studies suggest tumor-suppressive functions (Wang et al.,

2008a, 2008b), implying that the role of SIRT1 in cancer may

be context dependent, varying by the tumor type, specific onco-

genes present, and mutation status of p53 or other target

proteins (Brooks and Gu, 2009). We have reported that SIRT1

is overexpressed in chronic myeloid leukemia (CML) LSCs

and that SIRT1 inhibition selectively eliminates CML LSCs by
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Figure 1. SIRT1 Expression and Sensitivity to TV6 in AML Compared with Normal Stem/Progenitor Cells
(A and B) SIRT1 protein expression in CD34+CD38� (A) and CD34+ CD38+ (B) cells from better risk (n = 10), intermediate-risk (n = 17) and poor-risk (n = 17) AML

and normal CB and PBSC samples was analyzed by flow cytometry. Median fluorescence intensity of SIRT1 was expressed relative to that of immunoglobulin G

(IgG) control. FLT3-ITD AML samples are indicated in red.

(C) Sensitivity of AML samples (n = 20) to TV6 (10 mM) and nutlin-3 (10 mM) treatment for 24 hr. Viability was tested using Hoechst 33342 staining. Clinical and

genetic parameters for individual samples are shown. Flt3 mutation indicates FLT3-ITD mutation.

(D) Effect of 48 hr TV6 treatment on apoptosis of WT p53 FLT3-ITD MV4-11 and Molm-13 AML cells, and on FLT3-WT OCI-AML3 cells, using annexin V/DAPI

staining. Results represent mean ± SEM of three separate experiments. *p < 0.05 and **p < 0.01 for MV4-11 versus OCI-AML3; ^p < 0.05 and ^^p < 0.01 for

Molm-13 versus OCI-AML3.

(legend continued on next page)

Cell Stem Cell

SIRT1 in FLT3-ITD AML Stem Cells

432 Cell Stem Cell 15, 431–446, October 2, 2014 ª2014 Elsevier Inc.



Cell Stem Cell

SIRT1 in FLT3-ITD AML Stem Cells
increasing p53 acetylation and activity (Li et al., 2012). Although

the role of SIRT1 in murine adult HSCs is controversial (Leko

et al., 2012; Singh et al., 2013), SIRT1 inhibition has only a minor

impact on normal human CD34+ hematopoietic cells (Li et al.,

2012; MacCallum et al., 2013).

Given the association of SIRT1 activation with BCR-ABL (Yuan

et al., 2012) and the reported sensitivity of FLT3-ITD AML sam-

ples to p53-activating drugs (Long et al., 2010; McCormack

et al., 2012), we were interested in evaluating whether the

FLT3-ITD kinase was also associated with increased SIRT1

expression and activity. We studied SIRT1 expression and

effects of SIRT1 inhibition in a large group of human AML sam-

ples from two centers. We evaluated the association between

FLT3-ITD and increased SIRT1 activity, as well as the contribu-

tion of SIRT1 to survival, growth, and TKI response of FLT3-

ITD AML LSC. Finally, we investigated mechanisms contributing

to SIRT1 activation in FLT3-ITD AML.

RESULTS

SIRT1 Overexpression and Sensitivity to SIRT1
Inhibition in AML CD34+ Cells
We measured SIRT1 protein levels in AML and normal cord

blood (CB) and PB stem cell (PBSC) CD34+CD38+ committed

progenitors and CD34+CD38� primitive progenitors by labeling

with anti-SIRT1 antibody and flow cytometry (Li et al., 2012).

The majority of AML CD34+CD38� cells (n = 44) showed

increased SIRT1 expression compared to normal samples (Fig-

ure 1A). SIRT1 expression was also increased in AML compared

to normal CD34+CD38+ cells (Figure 1B). SIRT1 levels were

higher in cells from patients with poor and intermediate,

compared with better risk, genetic lesions based on National

Cancer Center Network (NCCN) criteria (O’Donnell et al., 2012)

(Figure 1A). Since SIRT1 can deacetylate and inhibit p53 activity

(Vaziri et al., 2001; Li et al., 2012), we evaluated the effect of the

SIRT1 inhibitor Tenovin-6 (TV6; 10 mM) and theMDM2antagonist

nutlin-3 (10 mM) on the viability of AML cells. TV6 and nutlin-3

demonstrated similar efficacy, on average, in inhibiting the

viability of AML blasts (Figure S1A available online). As expected,

moderate sensitivity to TV6 was seen in p53 wild-type (WT) sam-

ples (n = 25) but not p53 mutant samples (n = 5) (Figure S1B). On

the other hand, individual AML samples showed discrepancies

between TV6 and nutlin-3 sensitivity, suggesting that additional

factors may influence sensitivity. In samples showing >20% dif-

ference in viability after TV6 and nutlin-3 treatment, the FLT3-ITD

mutation was associated with increased TV6 sensitivity (p <

0.001) (Figure S1D). We also observed increased representation

of FLT3-ITD in AML samples with the highest sensitivity to TV6

(7 of 20 samples, p < 0.001) (Figure 1C), and in AML CD34+

CD38� and CD34+CD38+ cells with the highest SIRT1 expres-

sion (Figures 1A and 1B). The Molm-13 and MV4-11 AML cell

lines (p53 WT and FLT3-ITD+) showed significantly increased
(E) Survival of NSGmice transplanted withMOLM-13luc cells and treated starting

for 12 days. Survival of mice treated with both TV6 regimens was significantly long

daily).

(F) Sensitivity of AML samples with WT p53, FLT3-ITD (n = 5), or FLT3-TKD (n = 5

staining.

*p < 0.05, **p < 0.01, and ***p < 0.001. See also Figure S1 and Tables S1, S2, an

Ce
sensitivity to TV6 compared with FLT3 WT (FLT3-WT) and p53

WT OCI-AML3 cells; FLT3-WT and p53 null HL-60 cells; and

FLT3-WT and p53 mutant NB4 cells (Figures 1D and S1C). TV6

treatment significantly decreased leukemic burden and pro-

longed survival of mice xenografted with luciferase expressing

Molm-13 cells (McCormack et al., 2012) (Figures 1E, S1E, and

S1F). Moreover, TV6 significantly decreased the leukemic

burden in mice engrafted with control small hairpin RNA (shRNA)

but not p53 shRNA-expressing Molm13 cells (Figure S1G). FLT3

tyrosine kinase domain (TKD) mutations (D835Y) are also seen in

5% of AML cases (Kindler et al., 2010). It is interesting that FLT3-

TKD samples were significantly less sensitive to TV6 compared

to FLT3-ITD samples (Figure 1F). Cumulatively, these data

suggest that the FLT3-ITD mutation identifies AML cells with

increased sensitivity to SIRT1 inhibition.

Increased SIRT1 Expression and Sensitivity to SIRT1
Knockdown in FLT-ITD+ AML CD34+ cells
We further demonstrated that SIRT1 protein levels were signifi-

cantly increased in FLT3-ITD (n = 8) compared to FLT3-WT

(n = 9) or FLT3-TKD (n = 5) AML CD34+ cells (Figure 2A). SIRT1

expression was increased in FLT3-ITD compared to FLT3-WT

AML CD34+CD38� cells (n = 4, each group) coexpressing two

well-described LSC markers, CD47 (Majeti et al., 2009) and

CD123 (Jordan et al., 2000) (Figure S2A). SIRT1 expression in

FLT3-ITD AML samples was highest in S/G2/M, followed by

G1 and then G0 phase (data not shown). CB CD34+ cells trans-

duced with FLT3-ITD-expressing lentivirus vectors showed

increased SIRT1 and reduced acetylated p53 levels compared

to FLT3-WT or control vectors (Figures 2B and S2B). On the

other hand, significant differences in SIRT1 messenger RNA

(mRNA) levels were not seen between FLT3-ITD and FLT3-WT

AML CD34+ cells (Figure 2C), or between CB CD34+ cells ex-

pressing FLT3-ITD and FLT3-WT genes (data not shown).

SIRT1 protein half-life was increased in FLT3-ITD MV4-11

cells treated with cyclohexamide (CHX) to inhibit translation,

compared to FLT3-WT OCI-AML3 cells (Figure S2C), and in

CD34+ cells ectopically expressing FLT3-ITD compared to

FLT3-WT (Figure 2D). These results suggest that increased

SIRT1 expression in FLT3-ITD AML cells is related to increased

protein stability.

Since SIRT1-mediated deacetylation can inhibit p53 activity,

we analyzed p53 target gene induction after g-irradiation (3 Gy,

6 hr) in FLT3-ITD and FLT3-WT AML CD34+ cells (all with WT

p53 by sequencing). We observed reduced induction of mRNA

for p53 target genes, especially BAX and NOXA, in FLT3-ITD

compared to FLT3-WT cells (Figure 2E). FLT3-ITD MV4-11 cells

showed reduced radiation-induced increase in p21, BAX, NOXA,

PUMA, and DR5 protein levels compared to FLT3-WT OCI-

AML3 cells (Figure S2D). Knockdown of BAX using small inter-

fering RNA (siRNA) significantly reduced radiation-induced

apoptosis in MV4-11 cells and OCI-AML3 (Figures S2E and
5 days later with TV6 intraperitoneally (125mg/kg daily or 50mg/kg twice a day)

er than controls (p < 0.05 for 125mg/kg once daily; p < 0.001 for 50mg/kg twice

) mutations to TV6 (10 mM) for 24 hr. Viability was tested using Hoechst 33342

d S3.
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Figure 2. Increased SIRT1 Expression and Sensitivity to SIRT1 Knockdown in FLT-ITD+ AML CD34+ Cells

(A) SIRT1 protein expression in CD34+ cells from FLT3-ITD AML (n = 8), FLT3-WT AML (n = 9), FLT-TKD AML (n = 5), and normal CB or PBSC (n = 9) samples

analyzed by intracellular flow cytometry. IgG, immunoglobulin G.

(B) Western blotting for SIRT1, FLT3, p-FLT3 (Y589/Y591), p-STAT5 (Y694), and b-actin in CB CD34+ cells transduced with vectors expressing green fluorescent

protein (GFP) alone (Mock), FLT3-ITD, or FLT3-WT. Results are representative of three experiments.

(C) SIRT1 mRNA expression in CD34+ cells from FLT3-ITD (n = 11), FLT3-WT AML (n = 11), CB or normal PBSC (n = 8) samples analyzed by quantitative PCR.

(D) Western blotting for SIRT1, FLT3, pFLT3 (Y589/Y591), and b-actin in FLT3-ITD or FLT3-WT expressing CD34+ cells treated with CHX. The right panel indicates

the relative amount of SIRT1 analyzed by densitometry (n = 3). exp., exposure.

(legend continued on next page)
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S2F), indicating its importance as an effector of p53 response.

Radiation-induced apoptosis of MV4-11, but not OCI-AML3,

cells was significantly increased by TV6 pretreatment, and this

effect was also prevented by BAX knockdown (Figure S2F).

To further evaluate the functional role of SIRT1 in modulating

p53 function in FLT3-ITD AML CD34+ cells, we inhibited SIRT1

expression using lentivirus vectors expressing SIRT1 shRNA

(ShSIRT1) (Figures 2F and 2G) (Li et al., 2012). SIRT1 knockdown

increased acetylated p53 levels (Figure 2G) and significantly

increased apoptosis of FLT3-ITD cells (p < 0.05) but not FLT3-

WT AML CD34+ cells (Figures 2H and 2I) or normal CD34+ cells

(Figure S2G). These results suggest that SIRT1 deacetylates

p53 and inhibits p53 signaling to maintain survival of FLT3-ITD

AML progenitors. Since SIRT2 is also targeted by TV6 and could

also regulate AML cell growth (Dan et al., 2012), we compared

effects of anti-SIRT1 and anti-SIRT2 shRNA in FLT3-ITD (MV4-

11, Molm-13) and FLT3-WT (OCI-AML3) AML cells (Figures

S2H–S2J). Whereas SIRT1 knockdown significantly reduced

survival and proliferation of the two FLT3-ITD cell lines but not

the FLT3-WT line, SIRT2 knockdown did not affect survival and

proliferation of FLT3-ITD AML cells, suggesting a less critical

role. To further exclude off-target effects of ShSIRT1, we ex-

pressed a ShSIRT1-resistant SIRT1 construct (PITA-SIRT1-R)

containing five silent mutations in the shRNA-targeted region in

MV4-11 cells (Li et al., 2012). Expression of SIRT1-R maintained

SIRT1 protein levels after ShSIRT1 transduction (Figure S2K) and

abrogated the ability of ShSIRT1 to inhibit growth (Figure S2L),

suggesting that ShSIRT1 effects are indeed related to SIRT1

knockdown.

Pharmacological Inhibition of SIRT1 Inhibits AML
Progenitors
TV6 significantly enhanced acetylated and total p53 levels in

FLT3-ITD AML CD34+ cells (Figure 3A, left panel; Figure S3A).

Cells pretreated with nutlin-3 to stabilize p53 levels showed a

dose-dependent increase in p53 acetylation after TV6 treatment,

with minimal change in total p53 levels, indicating that increased

p53 acetylation was independent of increase in total p53 (Fig-

ure 4C and Figure S3C). TV6 did not increase acetylated or total

p53 in FLT3-WT AML CD34+ cells, whereas nutlin-3 increased

total p53 levels (Figure 3A, right panel; Figure S3B). In p53 null

K562 cells ectopically expressingWT p53 protein, TV6 increased

p53 acetylation without changing total p53 levels (Figure S3D). In

contrast, in K562 cells ectopically expressing a p53 mutant with

eight potential acetylation sites mutated (p53-8KR), TV6 failed

to increase p53 acetylation and resulted in significantly less

apoptosis (p < 0.01) (Figure S3E), confirming the importance of

p53 acetylation for inhibitory effects of TV6. The proliferation

inhibitory effects of TV6 were significantly reduced following

SIRT1 knockdown in MV4-11 cells, further indicating the impor-

tance of SIRT1 expression for TV6 effects (Figure S3F). TV6 also

increased expression of mRNA for the p53 target genes p21,
(E) Expression of p53 target genes in FLT3-ITD (n = 11) and FLT3-WT (n = 9) AMLC

(F–I) ShSIRT1 and control shRNA (Ctrl ShRNA) were expressed in FLT3-ITD AML

AML CD34+ cells (n = 3 per group). (G) SIRT1, acetylated p53 (Ac-p53), total p53

analyzed by western blotting. (H) Apoptosis of FLT3-ITD (n = 5) and FLT3-WT (n

fluorescence-activated cell sorting plots are shown in (I).

Results represent mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001. See also

Ce
BAX, PUMA, NOXA, and DR5 (p < 0.05) in FLT3-ITD AML

CD34+ cells (Figure 3B). shRNA-mediated knockdown of p53

significantly reduced TV6 or SIRT1 knockdown-induced growth

inhibition in FLT3-ITD cells (Figures 3C, 3D, S3G, and S3H), sup-

porting an important role for p53 in SIRT1-mediated effects. TV6

treatment resulted in increased inhibition of survival (Figure 3E)

and proliferation (Figure 3F) of FLT3-ITD compared to FLT3-

WT AML CD34+ cells and normal CD34+ cells (p < 0.05). Simi-

larly, CB CD34+ cells ectopically expressing FLT3-ITD showed

increased sensitivity to TV6-mediated apoptosis (Figure 3G)

and growth inhibition (Figure 3H), compared to FLT3-WT- or

vector-transduced CD34+ hematopoietic cells.

SIRT1 Inhibition Enhances AC220-Mediated Inhibition
on FLT3-ITD AML Progenitors
Knockdown of FLT3 expression in AML CD34+ cells only

modestly decreased SIRT1 expression (Figure 4A). Similarly,

the FLT3 TKI AC220, despite effectively inhibiting FLT3 kinase

activity in FLT3-ITD AML CD34+ cells (Figures 4B and S4A),

only partially decreased SIRT1 and p53 levels without signifi-

cantly affecting p53 acetylation (Figures 4C and S4A) or p53

target gene expression (Figure S4B). These results indicate

that FLT3 inhibition only marginally affects SIRT1-p53 signaling

in FLT3-ITD AML cells. TV6 alone did not significantly affect

FLT3 signaling, as evidenced by pSTAT5 expression (Figures

4B and 4C). TV6 increased acetylated p53 expression (Figure 4C)

and enhanced p53 target gene expression in AC220-treated

FLT3-ITD AML CD34+ cells (Figure 4D). SIRT1 knockdown using

shRNA also increased acetylated p53 expression in AC220-

treated FLT3-ITD AML cells (Figure S4C). AC220-induced

apoptosis and growth inhibition of MV4-11 cells was significantly

enhanced by combination of AC220 with TV6 (Figures S4D and

S4E). Consistent with previous reports (Levis, 2011), AC220

only modestly inhibited survival of primary human FLT3-ITD

AML CD34+ cells (Figure 4E). The combination of TV6 (1 mM)

with AC220 (20nM) significantly reduced the survival, growth,

and colony-forming capacity of FLT3-ITD AML CD34+ cells

compared to AC220 or TV6 alone (Figures 4E–4G). ShSIRT1 in

combination with AC220 also enhanced inhibition of AML cell

survival, growth, and colony formation compared to AC220

alone (Figures 4H–4J). These findings indicate that SIRT1 inhibi-

tion enhances targeting of FLT3-ITD AML progenitors in combi-

nation with TKI.

TV6 Enhances Targeting of FLT3-ITD LSCs In Vivo in
Combination with TKI
We tested the in vivo effect of TV6, AC220, and the combination

of both on primary human cells from three FLT3-ITD AML sam-

ples engrafted in NOD scid gamma (NSG) mice (Figure 5A).

Following confirmation of engraftment in peripheral blood (PB)

(>5% human CD45+ cells), mice were treated with either

vehicle (control), AC220 (10 mg/kg, gavage), TV6 (100 mg/kg,
D34+ cells 6 hr after irradiation (3 Gy) comparedwith nonirradiated control cells.

cells. (F) SIRT1 mRNA expression in ShSIRT1- and control-shRNA-expressing

, and b-actin levels in SIRT1- or control-shRNA-transduced MV4-11 AML cells

= 5) AML CD34+ cells expressing control and SIRT1 shRNA. Representative

Figure S2.
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Figure 3. Inhibition of SIRT1 by TV6 Reduces FLT3-ITD AML CD34+ Cell Growth and Survival by Activating p53 Signaling

(A) Western blotting for acetylated p53 (K382), total p53, and b-actin in FLT3-ITD (left panel) or FLT3-WT (right panel) AML CD34+ cells treated with TV6 or nutlin-3

at indicated doses (mM) for 8 hr. Results from two representative FLT3-ITD samples (out of five) and two representative FLT3-WT samples (out of five) are shown.

BV173 cells were included to identify p53 bands.

(B) p53 target gene expression in TV6 compared with vehicle-treated FLT3-ITD AML CD34+ cells analyzed by real-time quantitative RT-PCR (n = 7).

(C and D) p53 shRNA (Sh p53) or control shRNA (Ctrl ShRNA) were expressed in MV4-11 cells. (C) Western blotting for p53. (D) Growth of cells exposed to TV6 for

72 hr analyzed by CellTiter-Glo. *p < 0.05, **p < 0.01, ***p < 0.001, compared with control shRNA.

(legend continued on next page)
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intraperitoneal), or the combination for 4 weeks, after which hu-

man leukemia cell engraftment in BM and spleen was analyzed

by flow cytometry. Engrafted leukemic cells were CD45+ and

CD33+ with variable CD14 and CD15 expression and expressed

the FLT3-ITD gene (data not shown). TV6 or AC220 treatment

reduced the percentage and total number of human leukemic

cells in murine BM (Figures 5B, 5C, and S5A). The combination

of TV6 and AC220 significantly reduced AML cell engraftment

compared with AC220 alone (Figures 5B and S5A). Human

CD34+ cells in BM were significantly reduced in mice treated

with TV6 or AC220 alone, with further reduction seen in the com-

bination (Figure S5B). We observed treatment effects with the

combination on the percentage and number of AML cell in the

spleen and PB that were similar to those in BM cells of NSG

mice (Figures S5C and S5D; data not shown). Secondary trans-

plantation of BM cells from mice receiving combination treat-

ment resulted in significantly reduced engraftment in PB at 8

and 16 weeks (Figure 5D) and in BM at 16 weeks (Figures 5E

and S5E) compared to AC220 treatment alone, indicating

reduced LSC capacity of residual cells. We also studied another

sample from a chemotherapy-refractory AML patient using

molecular imaging of primary patient xenografts with fluores-

cently labeled monoclonal antibodies, as described previously

(McCormack et al., 2013). We observed significant differences

between combination and single-arm groups after 4 weeks of

therapy (combination versus TV6, p = 0.0005; combination

versus AC220, p = 0.015) (Figures 5F and 5G). AC220 or com-

bination treatment also resulted in significant reduction in

splenomegaly (Figure S5F). Mice treated with TV6 demonstrated

significantly improved survival after discontinuation of treatment

compared to control mice (p = 0.02), and the combination of

TV6 and AC220 further increased survival compared to AC220

alone (p = 0.0153) (Figure 5H). We also observed significantly

enhanced survival after secondary transplantation of BM from

mice receiving combination treatment (versus AC220, p = 0.03,

n = 3) (Figure 5I). The combination of AC220 and TV6 significantly

improved survival compared with AC220 (p = 0.0034) and stan-

dard chemotherapy (p = 0.006) (Figure S5G). These results show

that the combination of AC220 and TV6 enhances targeting of

primitive human AML LSC in vivo.

Cross-Regulation of SIRT1 and MYC in FLT3-ITD AML
Cells
Since previous studies have shown an association between

c-MYC and increased SIRT1 protein expression (Menssen

et al., 2012), we evaluated the role of c-MYC in increased

SIRT1 expression in FLT3-ITD AML. Analysis of two large AML

gene expression data sets available through the Gene Expres-

sion Omnibus (GSE1159: FLT3-ITD AML [n = 73] versus FLT3-

WT AML [n = 178] [Valk et al., 2004] and GSE8043: FLT3-ITD

AML [n = 120] versus FLT3-WT AML [n = 291] [Bullinger et al.,
(E and F) FLT3-ITD AML (n = 11), FLT3-WT AML (n = 11), and normal PBSC (n = 4

annexin V labeling. (F) Cell growth was evaluated using the CellTiter Glo assay

and ^^p < 0.01, compared with normal PBSCs.

(G and H) CB CD34+ cells transduced with vectors expressing GFP alone, FLT3-IT

analyzed by annexin V labeling. (H) Cell growth was evaluated using the CellTiter

cells.

Error bars represent mean ± SEM. See also Figure S3.

Ce
2008]) showed significant enrichment of a c-MYC-related gene

set in FLT3-ITD compared to FLT3-WT AML samples (Figure 6A).

c-MYC activity in AML cells was measured using a lentivirus-

expressed c-MYC reporter expressing firefly luciferase under

control of a minimal CMV promoter and tandem repeats of the

E box transcriptional response element. We confirmed that

shRNA-mediated inhibition of c-MYC expression reduced lucif-

erase activity in MV4-11 cells (Figure S6A). AC220 treatment in-

hibited reporter activity (Figure 6B), suggesting that c-MYC is

regulated, at least in part, by FLT3-ITD kinase activity, which is

consistent with previous reports (Kim et al., 2007). FLT3-ITD

kinase may regulate c-MYC through STAT5-induced enhance-

ment of PIM kinases (Choudhary et al., 2009), which can

modulate c-MYC stability and activity via phosphorylation (van

der Lugt et al., 1995). This is supported by the observation that

FLT3-ITD CD34+ cells showed higher PIM activity compared

to cells expressing FLT3-WT, indicated by increased expres-

sion of the PIM targets including p-BAD (Ser112), p-4EBP1

(Thr37/46), and p-c-MYC (Ser62) (Figure 6C); and by the ob-

servation that siRNA-mediated inhibition of PIM1, but not

PIM2, expression resulted in significantly decreased p-c-MYC

(Ser62), c-MYC, and SIRT1 expression in MV4-11 cells (Fig-

ure 6D). AC220 treatment reduced c-MYC Ser62 phosphoryla-

tion and total c-MYC levels in MV4-11 cells (Figure S6B) and

also reduced c-MYC levels in FLT3-ITD AML CD34+ cells (Fig-

ures 6E and S6B).

To evaluate the role of c-MYC in regulating SIRT1 expression,

we inhibited c-MYC expression in FLT3-ITD AML cells using

c-MYC shRNAs (Sh c-MYC-1 and Sh c-MYC-2). c-MYC knock-

down reduced SIRT1 protein expression in MV4-11 cells (Fig-

ure 6F). Similarly c-MYC siRNA reduced SIRT1 protein levels in

FLT3-ITD AML CD34+ cells (Figure 6G). Since SIRT1 protein

half-life is increased in FLT3-ITD cells, we evaluated whether

c-MYC regulated SIRT1 protein stability. We observed that

shRNA-mediated inhibition of c-MYC expression led to acceler-

ated reduction in SIRT1 levels in AML cells following CHX treat-

ment (Figure 6H). Proteasome inhibition by PS341 enhanced

SIRT1 expression in c-MYC knockdown cells (Figure S6C). We

next evaluated the role of c-MYC in regulating SIRT1 ubiquitina-

tion by cotransfecting hemagglutinin (HA)-ubiquitin, Flag-SIRT1,

and c-MYC into human embryonic kidney 293 (HEK293) cells;

immunoprecipitating SIRT1 using an anti-FLAG antibody; and

detecting ubiquitination by western blotting with an anti-HA anti-

body (Menssen et al., 2012). Coexpression of c-MYC signifi-

cantly inhibited polyubiquitination of SIRT1 (Figure 6I). These

findings indicate that c-MYC enhances SIRT1 expression by

reducing ubiquitination and increasing protein stability.

We further assessed the reciprocal role of SIRT1 in regulating

c-MYC in FLT3-ITD AML cells. SIRT1-mediated acetylation of

c-MYC has been associated with increased stability and activity

via altered proteasomal degradation or indirectly by altered
) CD34+ cells were exposed to TV6 for 48 hr. (E) Cell survival was analyzed by

. **p < 0.01, and ***p < 0.001, compared with untreated controls; ^p < 0.05,

D, or FLT3-WT (n = 5 each) were exposed to TV6 for 48 hr. (G) Cell survival was

Glo assay. *p < 0.05, **p < 0.01, ***p < 0.001, compared with GFP-transduced
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Figure 4. SIRT1 Inhibition Enhances AC220-Mediated Inhibition of FLT3-ITD AML CD34+ Cells

(A) Western blotting for FLT3, SIRT1, and b-actin in FLT3-ITD AML cells transfected with FLT3 siRNA and control siRNA (Ctrl SiRNA).

(B) FLT3 immunoprecipitates from FLT3-ITD AML CD34+ cells exposed to TV6 (1 mM), AC220 (20nM), or the combination for 8 hr were analyzed for FLT3 and

phosphotyrosine (pY) by western blotting. Input lysates were analyzed for p-STAT5, STAT5, and b-actin.

(C) FLT-ITD AML CD34+ cells with or without prior nutlin-3 (5 mM) exposure for 2 hr were exposed to TV6 (1 mM), AC220 (20nM), or the combination for 8 hr and

analyzed for acetylated p53 (K382), total p53, SIRT1, p-STAT5, STAT5, and b-actin by western blotting.

(D) p53 target gene expression in FLT3-ITD AML CD34+ cells treated with TV6 and AC220 compared with AC220 alone (n = 7)

(E and F) FLT3-ITD AML CD34+ (n = 11) cells were treated with TV6, AC220, or the combination for 48 hr. (E) Cell survival was analyzed by annexin V labeling.

(F) Cell growth was evaluated using the CellTiter-Glo assay.

(legend continued on next page)
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protein phosphorylation (Marshall et al., 2011; Menssen et al.,

2012). SIRT1 knockdown or TV6 treatment increased c-MYC

acetylation in FLT3-ITD AML cells, more readily detectable after

inhibition of class I and II histone deacetylase activity by Trichos-

tatin A (Figures S6D and S6E) (Vaziri et al., 2001). SIRT1 knock-

down or TV6 also reduced c-MYC Ser62 phosphorylation in

FLT3-ITD AML CD34+ cells, with further reduction seen in com-

bination with AC220 (Figures S6B and S6F). Both ShSIRT1 and

TV6 reduced c-MYC protein levels (Figures 6E, S6B, S6D, and

S6F) and c-MYC transcriptional activity (Figure S6G; data not

shown). Consistent with a potential role for SIRT1 in regulation

of c-MYC stability, TV6 reduced the half-life of c-MYC protein

in CHX-treated cells while increasing the half-life of p53 (Fig-

ure S6H). The combination of AC220 with ShSIRT1 or TV6 further

reduced c-MYC expression and activity (Figures 6E, S6B, S6F,

and S6G). These observations suggest that SIRT1-mediated de-

acetylation leads to enhanced c-MYC protein stability, expres-

sion, and activity. Our results support the existence of a positive

feedback loop in which c-MYC and SIRT1 increase each other’s

expression and activity in FLT3-ITD AML cells, which could

contribute to partial maintenance of MYC activity after AC220

treatment.

USP22 Interacts with SIRT1 and Maintains Its Protein
Expression
The USP22 deubiquitinase has been reported to stabilize SIRT1

by removing polyubiquitin chains conjugated on to SIRT1 (Lin

et al., 2012). USP22 mRNA expression was significantly higher

in FLT3-ITD compared to FLT3-WT AMLCD34+ cells (Figure 7A).

Lentiviral expression of FLT3-ITD in CB CD34+ cells resulted in

increased USP22 expression compared to FLT3-WT or vector

controls (Figure 7B). Knockdown of endogenous USP22 in

MV4-11 cells decreased SIRT1 protein levels (Figure 7C) and

significantly reduced cell growth (Figure S7A). The proteasome

inhibitor MG132 or PS341 restored SIRT1 expression in USP22

knockdown cells (Figure 7C). Ectopic USP22 expression

increased SIRT1 protein levels (Figure 7D) without significantly

affecting SIRT1 mRNA level (data not shown). The half-life of

SIRT1 protein was increased in USP22-overexpressing cells

compared to control cells (Figure 7E). AC220 treatment only

marginally affected USP22 protein expression in MV4-11 cells

(Figures S7B and S7C). USP22 coimmunoprecipitated with

SIRT1 (Figure S7B), and this association was not significantly

affected by AC220 treatment (Figure S7B). These results indicate

that USP22 directly interacts with SIRT1 and contributes to sta-

bilization of SIRT1 protein in FLT3-ITD AML cells.

We further evaluated the contribution of USP22 to c-MYC-

mediated reduction in SIRT1 ubiquitination and degradation.

Knockdown of c-MYC expression reduced USP22 protein levels

in MV4-11 cells (Figure 7F), whereas ectopic expression of

c-MYC in CD34+ or HEK293 cells increased USP22 protein

levels (Figures 7G and S7D). It is interesting that c-MYC overex-
(G) FLT3-ITD AML CD34+ cells (n = 4) exposed to TV-6 or AC220 and combin

granulocytic colonies were enumerated after 14 days.

(H–J) FLT3-ITD AML (n = 4) CD34+ cells transduced with control shRNA (Ctrl ShRN

(H) Cell survival was analyzed by annexin V labeling. (I) Cell growth was evaluat

erythrocytic and granulocytic colonies were enumerated after 14 days.

Cumulative results represent the mean ± SEM. *p < 0.05 and **p < 0.01, compar

Ce
pression or knockdown did not affect USP22 mRNA levels (Fig-

ures S7E and S7F), indicating that MYC may regulate USP22

posttranscriptionally. It is also interesting that downregulation

of SIRT1 expression following c-MYC knockdown was pre-

vented, at least in part, by USP22 overexpression (Figure 7H).

In addition, USP22 knockdown prevented c-MYC-mediated

reduction of SIRT1 ubiquitination (Figure 7I) and increase in

SIRT1 expression (Figure S7G). These results support a role for

USP22 in MYC-mediated increase in SIRT1 protein stabilization.

DISCUSSION

We have found that AML stem/progenitor cells demonstrate

varying levels of SIRT1 overexpression and sensitivity to SIRT1

inhibitor treatment. The FLT3-ITDmutation was amajor determi-

nant of sensitivity to SIRT1 inhibition. FLT3-ITD AML stem/

progenitor cells demonstrated high SIRT1 protein levels and

sensitivity to SIRT1 inhibition both in vitro and in vivo. The effects

of SIRT1 inhibition on FLT3-ITD AML cells were related to

increased p53 acetylation and transcriptional activity. These

results indicate an important role for SIRT1-mediated downregu-

lation of p53 in growth and maintenance of FLT3-ITD AML

LSCs. SIRT1 inhibition only modestly inhibited proliferation of

normal CD34+ cells without significantly altering their survival,

indicating relative selectivity for AML LSCs. The combination of

SIRT1 inhibition with the FLT3 TKI AC220 significantly enhanced

targeting of FLT3-ITD AML progenitors in vitro and FLT3-ITD

AML LSCs in vivo compared to AC220 alone, indicating that

SIRT1 activation contributes to therapeutic resistance of FLT3-

ITD AML LSCs.

Increased SIRT1 protein expression in FLT3-ITD AML stem/

progenitor cells was related to increased protein half-life.

AC220 treatment partially inhibited SIRT1 expression in FLT3-

ITD+ cells. Our studies indicate a potential role for c-MYC in

SIRT1 regulation in FLT3-ITD cells. Our analysis of public micro-

array data sets show significant enrichment of c-MYC-related

genes in FLT3-ITD compared to FLT3-WT AML cells, confirming

previous reports of increased c-MYC in FLT3-ITD AML cells (Kim

et al., 2007). c-MYC can potentially modulate SIRT1 activity by

increasing NAD+ levels through NAMPT gene induction or by

sequestering the SIRT1 inhibitor DBC-1 (Menssen et al., 2012).

We identified amechanism of c-MYC regulation of SIRT1 protein

expression by reduction of SIRT1 polyubiquitination and protea-

somal degradation. AC220 reduced c-MYC Ser62 phosphoryla-

tion and expression in FLT3-ITD cells, indicating that increased

c-MYC was at least partially dependent on FLT3 kinase activity.

Our results suggest that enhanced c-MYC phosphorylation and

expression is related to activation of the PIM-1 kinase down-

stream of FLT3-ITD (Choudhary et al., 2009; Yang et al., 2012).

SIRT1 is known to interact with and deacetylate c-MYC, but

the functional consequences of c-MYC deacetylation are un-

clear. Several groups have reported that c-MYC or N-MYC
ation were plated in methylcellulose progenitor culture, and erythrocytic and

A) and ShSIRT1 vectors were cultured with or without AC220 (20 nM) for 72 hr.

ed using the CellTiter-Glo assay. (J) Clonogenic assays were performed, and

ed with indicated groups. See also Figure S4.
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deacetylation by SIRT1 leads to increased stability and activity

through multiple mechanisms, including altered ubiquitination,

altered phosphorylation via reduced MKP3 expression (Marshall

et al., 2011), and increased c-MYC-MAX heterodimerization

(Menssen et al., 2012), whereas one study found that SIRT1

reduced c-MYC stability and function (Yuan et al., 2009). We

found that SIRT1 inhibition resulted in increased c-MYC acetyla-

tion, reduced c-MYC phosphorylation, enhanced c-MYC degra-

dation, and reduced c-MYC expression and activity in FLT3-ITD

cells. Our results suggest that a feed-forward SIRT1-c-MYC acti-

vation loop in FLT3-ITD AML, with reciprocal activation of SIRT1

and c-MYC by each other, may contribute to the maintenance of

c-MYC activity in TKI-treated cells.

The USP22 deubiquitinase is reported to complex with SIRT1

and act as a SIRT1 deubiquitinase. USP22 is part of a death-

from-cancer gene signature (Zhang et al., 2008) associated

with poor prognosis in a variety of cancers (Schrecengost

et al., 2014). To date, it is known to be part of the SAGA complex

required for c-MYC-related transformation (Zhang et al., 2008).

USP22 expression was significantly increased in FLT3-ITD

AML CD34+ cells and was marginally affected by blocking

FLT3 kinase activity. We show an important role for c-MYC in

upregulation of USP22 protein expression in FLT3-ITD cells.

However, although USP22 mRNA expression was increased

in FLT3-ITD AML cells, it was not increased following MYC

overexpression, indicating that additional MYC-independent

mechanisms may contribute to increased USP22 transcription.

Previous reports showed divergent effects of USP22 on SIRT1

levels (Lin et al., 2012; Armour et al., 2013). We show that

USP22 directly interacts with SIRT1 in FLT3-ITD AML cells in a

FLT3-kinase-independent manner. USP22 knockdown reduced

SIRT1 expression in FLT3-ITD AML cells, whereas USP22 over-

expression increased SIRT1 levels by increasing protein stability,

indicating that USP22 is an important positive regulator of SIRT1

in FLT3-ITD cells. We further show that USP22 plays an impor-

tant role in mediating c-MYC-driven inhibition of SIRT1 ubiquiti-

nation and degradation. These findings elucidate a mechanistic

connection between FLT3, c-MYC, and USP22 in the regulation

of SIRT1 in FLT3-ITD AML cells.

SIRT1 overexpression was associated with down-modulation

of p53 activity in FLT3-ITD AML CD34+ cells. SIRT1 can nega-

tively regulate p53 by deacetylating several lysine sites (Vaziri
Figure 5. SIRT1 Inhibition Reduces In Vivo Growth of Primary AML Ste

(A) T-depleted primary human AML cells were injected into NSGmice (23 106 cel

with AC220 (10 mg/kg/day, oral gavage), TV6 (100 mg/kg/day intraperitoneally),

group). Engraftment of human cells was analyzed by flow cytometry. Imaging, se

(B) The percentage of human AML CD45+ cells from three different samples (AM

(C) Representative results for CD45 and CD33 expression from AML 866.

(D) The percentage of human AMLCD45+ cells (AML866) in blood of secondary re

at 8 and 16 weeks.

(E) The percentage and number of human AML CD45+ cells (AML 866) in the BM

(F) CD34+ cells from a chemotherapy-resistant FLT3-ITD AML patient were injecte

TV6, or the combination. Subsequently, three mice from each group were injected

optical imaging. PC, photon counts.

(G) Quantitative results from bioimaging studies analyzed by Optiview software (Ve

0.01, and ***p < 0.001, compared with combination.

(H) Survival of mice from (F) after discontinuation of treatment. PC, photon coun

(I) Survival after transplantation of BM cells from treated mice (F) into secondary

For (B), (D), and (E), results represent the mean ± SEM. *p < 0.05, **p < 0.01, and

Ce
et al., 2001; Brooks and Gu, 2009). Acetylation of p53 modulates

protein stability and transcriptional activity independent of phos-

phorylation status (Tang et al., 2008). It is interesting that SIRT1

inhibition did not effectively induce p53 activation or inhibit FLT3-

WT AML cells, despite their having nonmutated p53, whereas

MDM2 inhibitors such as nutlin-3 could activate p53 in FLT3-

WT AML cells and even normal cells (Shangary et al., 2008).

SIRT1 overexpression may be necessary to inhibit p53 activity

and allow maintenance of AML cells in the setting of FLT3-ITD-

induced oncogenic stress, similar to its potential role as an adap-

tive response to BCR-ABL-related oncogenic stress in CML cells

(Li et al., 2012). In contrast SIRT1 activation was not a feature of

AML cells with FLT3-TKD mutations, which may have different

signaling and transformative properties compared to FLT3-ITD

mutations (Kindler et al., 2010). Further studies are required to

determine the spectrum and nature of oncogenic stimuli that

induce SIRT1 activation and sensitivity to SIRT1 inhibition. In

addition to p53, SIRT1 can also deacetylate several other pro-

teins that regulate cell growth and survival (Brooks and Gu,

2009). Indeed, our studies show the importance of SIRT1 regula-

tion of c-MYC in FLT3-ITD AML cells. The role of additional

SIRT1 targets such as Ku70 (Yuan et al., 2012; Wang et al.,

2013) in LSC transformation and drug resistance requires further

investigation.

Our results show the importance of identifying subgroups of

patients that could benefit from SIRT1 inhibitor treatment, given

the heterogeneous genetic background of leukemias such as

AML. Our results are consistent with those of Bradbury et al.

(2005), who observed increased SIRT1 expression in most

AML samples. In contrast, Dan et al. (2012) found that SIRT1

mRNAwas unchanged or even slightly diminished in AML blasts,

compared with normal CD34+, cells but did not determine asso-

ciation with AML subtypes. In addition, these studies did not

evaluate protein levels, which we show here to be critically

important. Another study from Sasca et al. (2014), published

while this paper was under review, also reported SIRT1 protein

overexpression in FLT3-ITD AML samples. Leukemic blasts

from murine AML models based on coexpression of MLL-AF9

or AML1-ETO with FLT3-ITD showed dependence on SIRT1

activity. Although in vivo analysis of primary human AML LSC

was not performed, the results of this study are consistent with

our own and support SIRT1 inhibition as an attractive therapeutic
m Cells in Immunodeficient Mice

ls per mouse). After engraftment was confirmed, mice were treated for 4 weeks

the combination of TV6 and AC220, or vehicle (controls) (n = 7 or 8 mice per

condary transplantation, and survival analysis were also performed.

L 866, AML 1074, and AML 1107) in the BM of treated mice.

cipients of BM cells from treatedmice (23 106 cells per mouse, n = 6 per group)

of secondary recipient mice at 16 weeks.

d into NSGmice and treated for 4 weeks (n = 10 per group) with vehicle, AC220,

with fluorescently labeled monoclonal antibodies and imaged by time domain

rsion 3.03, ART). Results represent mean ± SEM for threemice. *p < 0.05, **p <

ts.

recipients.

***p < 0.001; comparison has been indicated in the graph. See also Figure S5.
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Figure 6. Cross-Regulation of SIRT1 and MYC in FLT3-ITD AML Cells

(A) Gene set enrichment analysis showing enrichment of a MYC gene set (Schuhmacher et al., 2001) in FLT3-ITD versus FLT3-WT AML cells in two large

microarray data sets. Normalized enrichment score (NES) and statistical significance/false discovery rate q value (FDR q val) are indicated.

(B) MV4-11 cells cotransfected with a c-MYC firefly luciferase reporter and a Renilla luciferase plasmid were exposed with AC220 or vehicle control for 24 hr and

assayed for luciferase normalized to Renilla activity. The mean value of triplicate experiments is shown.

(C) Western blotting for SIRT1, FLT3, pFLT3 (Y589/Y591), p-Bad (ser112), Bad, p-4EBP1 (Thr37/46), 4EBP1, p-c-MYC (ser62), c-MYC, and b-actin in CB CD34+

cells transduced with FUGW, FUGW/FLT3-ITD, or FUGW/FLT3-WT vectors.

(legend continued on next page)
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strategy in FLT3-ITD AML. The selectivity of SIRT1 inhibition

toward FLT3-ITD AML cells is expected to yield a high thera-

peutic index toward leukemic cells. Small molecule SIRT1 inhib-

itors are being investigated as potential anticancer treatments

(Alcaı́n and Villalba, 2009). Although the pharmacological prop-

erties of TV6 may not allow it to be a suitable candidate for

drug development, it is a useful compound to study potential

therapeutic effects of SIRT1 inhibition in cancer. Our observa-

tions support further investigation of Tenovin derivatives and

other SIRT1 inhibitors to target FLT3-ITD AML, in combination

with TKI treatment.

In conclusion, this study improves our understanding of mech-

anisms underlying the function of SIRT1 as an oncogene versus

tumor suppressor gene in specific genetic contexts; elucidates a

mechanistic connection between FLT3, c-MYC, and USP22 in

regulation of SIRT1 and p53, and supports further development

of SIRT1 inhibition as a potential approach for more selective tar-

geting of malignant stem cells in selected cancers.

EXPERIMENTAL PROCEDURES

Samples and Materials

PB or BM samples were obtained from AML patients with active disease at

diagnosis or at relapse in two centers. Patient characteristics are shown in

Tables S1 and S2. Risk groups were based on NCCN criteria (Table S3)

(O’Donnell et al., 2012). Normal PBSCs were obtained from allogeneic

transplant donors. CB was obtained from StemCyte. All subjects signed

informed consent forms. Sample acquisition was approved by the City of

Hope (COH) Institutional Review Board or the regional Ethics Committee

(REK Vest; http://helseforskning.etikkom.no; Norwegian Ministry of Education

and Research) in accordance with the Declaration of Helsinki. Mononuclear

cells were isolated by Ficoll-Hypaque (Sigma Diagnostics) centrifugation.

CD34+ cells or CD3� cells were selected using immunomagnetic columns

(Miltenyi Biotec). Details of cell lines, drugs, and DNA constructs are provided

in the Supplemental Experimental Procedures.

Cell Transduction and Transfection

CD34+ cells were transduced with lentivirus vectors expressing shRNA or

FLT3 constructs (provided by Dr. Linzhao Cheng, Johns Hopkins University).

MV4-11 cells were transduced with PITA-SIRT1-R vectors. Human AML

CD34+ cells or MV4-11 cells were transfected with siRNAs to FLT3, c-MYC,

BAX, PIM-1, PIM-2, and control siRNAs (Applied BioSystems/Ambion) using

the Amaxa Nucleofector. Details are provided in the Supplemental Experi-

mental Procedures.

Intracellular Staining for SIRT1

CD34+ cells were labeled with CD34-PeCy7, Lin-APC-Cy7 (including CD2,

CD3, CD7, CD10, CD19, and CD235a), and CD38-APC or CD38-PE, CD90-

PercpCy5.5, CD123-APC, or CD47-APC (eBioscience) antibodies; fixed and

permeabilized (Cytofix/Cytoperm Kit, Beckman Coulter); labeled with rabbit
(D) Western blotting for PIM-1, PIM-2, SIRT, p-c-MYC (Ser62), c-MYC, and b-ac

cells.

(E) Cells cultured with TV6 (1 mM), AC220 (20 nM), or the combination for 8 hr we

p-STAT5, and STAT5.

(F) Western blotting for SIRT1 and c-MYC levels in c-MYC-shRNA-expressing M

(G) Western blotting for SIRT1 and c-MYC levels following siRNA-mediated c-M

(H) Western blotting for SIRT1 following CHX treatment of c-MYC knockdown o

tometry quantitation (n = 3).

(I) HEK293 cells were cotransfected with Flag-SIRT1 or vector control, c-MYC or

were immunoprecipitated (IP) for Flag and western blotted for SIRT1, c-MYC, and

SIRT1, c-MYC, and b-actin. IB, immunoblotting.

For (B) and (H), results represent mean ± SEM from three independent experiment

control (B) or control shRNA (H). See also Figure S6.

Ce
anti-human SIRT1 (E1104-1, Millipore) and Alexa Fluor 488-conjugated goat

anti-rabbit antibodies (Invitrogen); and analyzed by flow cytometry. Data

were analyzed using FlowJo software (version 8.5.2; TreeStar).

Analysis of Viability and Growth

Cells were labeled with annexin V/DAPI, and the percentage of surviving cells

(Annexin V�DAPI�) was analyzed. Cell viability was also assessed by Hoechst

33342 staining (Invitrogen). Cell growth was evaluated using the CellTiter-Glo

assay (Promega). Details are provided in the Supplemental Experimental

Procedures.

In Vivo Treatment of AML-Engrafted Immunodeficient Mice

T-cell-depleted or CD34+ selected human AML cells were transplanted into

sublethally irradiated (300 cGy) 8-week-old NOD.Cg-Prkdcscid IL2rgtm1Wjl/

SzJ mice (NSG mice, Jackson Laboratory). After engraftment was confirmed,

mice were treated with AC220, TV6, the combination, or vehicle for 4 weeks or

with chemotherapy as described elsewhere (McCormack et al., 2013). BM,

PB, and spleen cells were analyzed for engraftment by flow cytometry analysis

of human CD45+ cells. A group of mice was followed for survival after discon-

tinuation of treatment. BM cells from primary recipients were used for second-

ary transplantation into irradiated NSG mice (2 3 106 cells per mouse), and

engraftment was analyzed after 16 weeks. The procedure for evaluation of

engraftment, the luciferase-expressing MOLM-13 xenograft model, and opti-

cal imaging are described elsewhere (McCormack et al., 2012) details of which

can also be found in the Supplemental Experimental Procedures. Mouse care

and experimental procedures were performed in accordance with approved

protocols from the Institutional Animal Care and Use Committee at the COH

National Medical Center and Norwegian Animal Research Authority in accor-

dance with The European Convention for the Protection of Vertebrates Used

for Scientific Purposes.

Luciferase Reporter Assays

MV4-11 cells were transduced with c-Myc reporter (Cignal Myc Lentivirus

Reporter, QIAGEN) and selected for Puro resistance. Reporter activity was

measured by the Dual-Glo Luciferase Assay System (Promega) and normal-

ized to EF1a-renilla luciferase.

Real-Time Quantitative PCR Analysis

Real-time quantitative PCR analysis was performed with primers and probes

for p21, BAX, PUMA, NOXA, DR5, USP22, and SIRT1. Details are provided

in the Supplemental Experimental Procedures.

Immunoprecipitation and Western Blotting

Antibodies used for immunoprecipitation were conjugated with Flag/M2 beads

(Sigma-Aldrich) or protein A/G beads using an antibody crosslinking kit (Pierce

Biotechnology). Western blotting was performed as described in the Supple-

mental Experimental Procedures.

Statistics

Data obtained from independent experiments were reported as the mean ±

SEM. Student’s t test, Mann-Whitney test, and two-way ANOVA with multiple

testing were performed to determine statistical significance as appropriate.

p < 0.05 was considered statistically significant.
tin in control siRNA (Ctrl SiRNA)-, PIM-1- or PIM-2-siRNA-transfected MV4-11

re analyzed by western blotting for SIRT1, c-MYC, p-c-MYC (Ser62), b-actin,

V4-11 cells.

YC knockdown in FLT3-ITD AML CD34+ cells.

r control MV4-11 cells (upper panel). The lower panel shows results of densi-

empty vector control, and HA-tagged ubiquitin (Ub) as indicated; then lysates

HA. The right panel shows input levels based on western blotting of lysates for

s. *p < 0.05, **p < 0.01, and ***p < 0.001; comparison has beenmade to no drug
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Figure 7. USP22 Interacts with SIRT1 and Maintains Its Protein Expression

(A) USP22 mRNA levels in FLT3-ITD (n = 12) and FLT3-WT (n = 12) AML CD34+ cells.

(B) Western blotting for SIRT1, FLT3, pFLT3 (Y589/Y591), USP22, and b-actin in CB CD34+ cells transduced with FUGW, FUGW/FLT3-ITD, or FUGW/FLT3-WT

vectors.

(C) Western blotting for SIRT1, USP22, and b-actin expression in MV4-11 cells expressing shRNA to USP22 or control shRNA (Ctrl ShRNA) (left panel). Western

blotting for SIRT1, USP22, and b-actin was also performed on shRNA-expressing cells incubated with MG132 (10 mM) or PS341 (50 nM) for 4 hr (right panel).

(D) Western blotting for SIRT1, USP22, Flag, and b-actin in MV4-11 cells transfected with Flag-GFP or Flag-USP22.

(legend continued on next page)

Cell Stem Cell

SIRT1 in FLT3-ITD AML Stem Cells

444 Cell Stem Cell 15, 431–446, October 2, 2014 ª2014 Elsevier Inc.



Cell Stem Cell

SIRT1 in FLT3-ITD AML Stem Cells
SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes Supplemental Experimental

Procedures, seven figures, and three tables and can be found with this article

online at http://dx.doi.org/10.1016/j.stem.2014.08.001.
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