35 research outputs found

    Polycystic ovary syndrome in patients with epilepsy: A study in 102 Chinese women

    Get PDF
    AbstractPurposeThe incidence of polycystic ovary syndrome (PCOS) increases in women with epilepsy (WWE), which appears to vary with ethnicity. This study was conducted to determine the incidence and risk factors of PCOS in Chinese WWE.MethodsThe study was carried out in 102 of 139 Chinese WWE at reproductive ages, with 32 receiving valproic acid (VPA), 40 receiving other antiepileptic drugs (AEDs), and 30 without AEDs therapy. PCOS was defined as having 2 or more of the following components: polycystic ovaries, hyperandrogenism, and amenorrhoea or oligomenorrhoea (a/oligomenorrhoea).ResultsOne or more isolated components of PCOS were found in 56 (54.9%) patients, with 29 (28.4%) having polycystic ovaries, 20 (19.6%) with a/oligomenorrhea, 7 (6.9%) with hyperandrogenism, and 13 (12.7%) with defined PCOS. Their average age at the start of seizure was 13.8±6.5years, younger than that of patients without these disorders (16.9±8.6years, p<0.05). VPA therapy increased the incidence of PCOS (11/32, 34.4%), in addition to increased blood levels of testosterone and luteinizing hormone (LH) as well as LH to FSH (follicle-stimulating hormone) ratio. No significant relationship was found between the incidence of PCOS and the type, duration, or frequency of seizures in these WWE.ConclusionThere is an increased incidence of PCOS in Chinese WWE at reproductive ages, by more than 2 times of that in the general population. Risk factors include seizures starting at a young age and VPA therapy

    A Chinese Herbal Preparation Containing Radix Salviae Miltiorrhizae, Radix Notoginseng and Borneolum Syntheticum Reduces Circulating Adhesion Molecules

    Get PDF
    Circulating adhesion molecules (CAMs), surface proteins expressed in the vascular endothelium, have emerged as risk factors for cardiovascular disease (CVD). CAMs are involved in intercellular communication that are believed to play a role in atherosclerosis. A Chinese medicine, the “Dantonic Pill” (DP) (also known as the “Cardiotonic Pill”), containing three Chinese herbal material medica, Radix Salviae Miltiorrhizae, Radix Notoginseng and Borneolum Syntheticum, has been used in China for the prevention and management of CVD. Previous laboratory and animal studies have suggested that this preparation reduces both atherogenesis and adhesion molecule expression. A parallel double blind randomized placebo-controlled study was conducted to assess the effects of the DP on three species of CAM (intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 and endothelial cell selectin (E-selectin)) in participants with mild-moderate hypercholesterolemia. Secondary endpoints included biochemical and hematological variables and clinical effects. Forty participants were randomized to either treatment or control for 12 weeks. Treatment with DP was associated with a statistically significant decrease in ICAM-1 (9% decrease, P = .03) and E-Selectin (15% decrease, P = .004). There was no significant change in renal function tests, liver function tests, glucose, lipids or C-reactive protein levels and clinical adverse effects did not differ between the active and the control groups. There were no relevant changes in participants receiving placebo. These results suggest that this herbal medicine may contribute to the development of a novel approach to cardiovascular risk reduction

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effects of estrogens on the vasculature in vitro cell culture studies

    No full text
    Abstract not availabl

    Design, Fabrication and Characterization of a MEMS-Based Three-Dimensional Electric Field Sensor with Low Cross-Axis Coupling Interference

    No full text
    One of the major concerns in the development of three-dimensional (3D) electric field sensors (EFSs) is their susceptibility to cross-axis coupling interference. The output signal for each sensing axis of a 3D EFS is often coupled by electric field components from the two other orthogonal sensing axes. In this paper, a one-dimensional (1D) electric field sensor chip (EFSC) with low cross-axis coupling interference is presented. It is designed to be symmetrical, forming a pair of in-plane symmetrically-located sensing structures. Using a difference circuit, the 1D EFSC is capable of sensing parallel electric fields along symmetrical structures and eliminating cross-axis coupling interference, which is contrast to previously reported 1D EFSCs designed for perpendicular electric field component measurement. Thus, a 3D EFS with low cross-axis coupling interference can be realized using three proposed 1D EFSCs. This 3D EFS has the advantages of low cross-axis coupling interference, small size, and high integration. The testing and calibration systems of the proposed 3D EFS were developed. Experimental results show that in the range of 0–120 kV/m, cross-axis sensitivities are within 5.48%, and the total measurement errors of this 3D EFS are within 6.16%

    A High Sensitivity Electric Field Microsensor Based on Torsional Resonance

    No full text
    This paper proposes a high sensitivity electric field microsensor (EFM) based on torsional resonance. The proposed microsensor adopts torsional shutter, which is composed of shielding electrodes and torsional beams. The movable shielding electrodes and the fixed sensing electrodes are fabricated on the same plane and interdigitally arranged. Push–pull electrostatic actuation method is employed to excite the torsional shutter. Simulation results proved that the torsional shutter has higher efficiency of charge induction. The optimization of structure parameters was conducted to improve its efficiency of charge induction further. A micromachining fabrication process was developed to fabricate the EFM. Experiments were conducted to characterize the EFM. A good linearity of 0.15% was achieved within an electrostatic field range of 0–50 kV/m, and the uncertainty was below 0.38% in the three roundtrip measurements. A high sensitivity of 4.82 mV/(kV/m) was achieved with the trans-resistance of 100 MΩ, which is improved by at least one order of magnitude compared with previously reported EFMs. The efficiency of charge induction for this microsensor reached 48.19 pA/(kV/m)
    corecore