2,450 research outputs found

    Implications of new measurements of O-16 + p + C-12,13, N-14,15 for the abundances of C, N isotopes at the cosmic ray source

    Get PDF
    The fragmentation of a 225 MeV/n O-16 beam was investigated at the Bevalac. Preliminary cross sections for mass = 13, 14, 15 fragments are used to constrain the nuclear excitation functions employed in galactic propagation calculations. Comparison to cosmic ray isotonic data at low energies shows that in the cosmic ray source C-13/C approximately 2% and N-14/0=3-6%. No source abundance of N-15 is required with the current experimental results

    Spectral engineering of optical fiber preforms through active nanoparticle doping

    Get PDF
    Europium doped alkaline earth fluoride [Eu:AEF(2) (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, tau, of the Eu3+ emission that follows the cationic mass; tau(Ca) \u3c tau(Sr) \u3c tau(Ba) with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise standard materials, e.g., vapor-derived silica, in next generation optical fibers

    Spectral Engineering of Optical Fiber Preforms Through Active Nanoparticle Doping

    Get PDF
    Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, τ, of the Eu3+ emission that follows the cationic mass; τCa \u3c τSr \u3c τBa with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise “standard” materials, e.g., vapor-derived silica, in next generation optical fibers

    HyperK\"ahler quotients and N=4 gauge theories in D=2

    Full text link
    We consider certain N=4 supersymmetric gauge theories in D=2 coupled to quaternionic matter multiplets in a minimal way. These theories admit as effective theories sigma-models on non-trivial HyperK\"ahler manifolds obtained as HyperK\"ahler quotients. The example of ALE manifolds is discussed. (Based on a talk given by P. Fr\'e at the F. Gursey Memorial Conference, Istanbul, June 1994).Comment: 22 pages, Latex, no figure

    Early Experience With a Novel Dissection-Specific Stent-Graft to Prevent Distal Stent-Graft-Induced New Entry Tears After Thoracic Endovascular Repair of Chronic Type B Aortic Dissections

    Get PDF
    Background: The aim was to report short and mid-term outcomes of a novel, investigational, dissection-specific stent-graft (DSSG), specifically designed to address the features of chronic type B aortic dissection (CTBAD) and reduce the risk of distal stent-graft-induced new entry tears (dSINE). Materials and Methods: A retrospective single center cohort study of all patients undergoing TEVAR with the DSSG for CTBAD from January 1, 2017 to January 31, 2020. The DSSG, which is a modified stent-graft based on the Cook Zenith Alpha Thoracic platform, has no proximal barbs, and a customized longer body length with substantial taper. The second and third distal Z-stents are sited internally to avoid any contact of the metal skeleton with the dissection membrane and have reduced radial force, while the most distal stent was removed creating a distal 30 mm unsupported Dacron graft. Results: Sixteen patients (13 males, 3 females) with a median age of 66 years (range 31–79 years) underwent elective TEVAR of CTBAD using the DSSG. Six patients (38%) had an underlying connective tissue disorder. The median tapering was 10 mm (range 4 mm–21 mm) and median length 270 mm (range 210–380 mm). Technical success was achieved in all but one case (96%). One patient died within 30 days, due to retrograde type A dissection with cardiac tamponade. The 30-day rate of stroke, spinal cord ischemia, and re-interventions was 0%. After median imaging follow-up time of 17 months (range 1–31 months), one patient developed a dSINE 4 months after the index procedure. After median survival follow-up of 23 months (range 2–35 months), one late death occurred due to traumatic brain injury, while no aortic-related death occurred during follow-up. Complete false lumen (FL) thrombosis was achieved in 9 patients while the remaining 6 showed partial FL thrombosis. No instances of diameter increase at the level oftreated aortic segment were noted with serial measurements showing either stable (n = 7) or decreased (n = 8) maximal transverse diameter. Conclusions: Use of a novel DSSG with low radial force for TEVAR in the setting of CTBAD is safe and feasible. This early real-world experience shows promising mid-term effectiveness with low rates of dSINE or unplanned re-interventions and satisfactory aortic remodeling during follow-up. Longer follow-up is needed, however, before any firm conclusions can be drawn

    A note on the decay of noncommutative solitons

    Get PDF
    We propose an ansatz for the equations of motion of the noncommutative model of a tachyonic scalar field interacting with a gauge field, which allows one to find time-dependent solutions describing decaying solitons. These correspond to the collapse of lower dimensional branes obtained through tachyon condensation of unstable brane systems in string theory.Comment: 8 pages, no figures. Extended version, references adde

    Two-Dimensional Dilaton-Gravity Coupled to Massless Spinors

    Get PDF
    We apply a global and geometrically well-defined formalism for spinor-dilaton-gravity to two-dimensional manifolds. We discuss the general formalism and focus attention on some particular choices of the dilatonic potential. For constant dilatonic potential the model turns out to be completely solvable and the general solution is found. For linear and exponential dilatonic potentials we present the class of exact solutions with a Killing vector.Comment: 21 pages, LaTeX, minor changes in text and format, final version to appear in Classical and Quantum Gravit

    Mitigation and screening for environmental assessment

    Get PDF
    This article considers how, as a matter of law and policy, mitigation measures should be taken into account in determining whether a project will have significant environmental effects and therefore be subject to assessment under the EU Environmental Impact Assessment (EIA) Directive. This is not straightforward: it is problematic to distinguish clearly between an activity and the measures proposed to minimise or mitigate for the adverse consequences of the activity. The issue is a salient one in impact assessment law, but under-explored in the literature and handled with some difficulty by the courts. I argue that there is an unnecessarily and undesirably narrow approach currently taken under the EIA Directive, which could be improved upon by taking a more adaptive approach; alternatively a heightened standard of review of ‘significance’, and within this of the scope for mitigation measures to bring projects beneath the significance threshold, may also be desirable

    Twistor theory of hyper-K{\"a}hler metrics with hidden symmetries

    Full text link
    We briefly review the hierarchy for the hyper-K\"ahler equations and define a notion of symmetry for solutions of this hierarchy. A four-dimensional hyper-K\"ahler metric admits a hidden symmetry if it embeds into a hierarchy with a symmetry. It is shown that a hyper-K\"ahler metric admits a hidden symmetry if it admits a certain Killing spinor. We show that if the hidden symmetry is tri-holomorphic, then this is equivalent to requiring symmetry along a higher time and the hidden symmetry determines a `twistor group' action as introduced by Bielawski \cite{B00}. This leads to a construction for the solution to the hierarchy in terms of linear equations and variants of the generalised Legendre transform for the hyper-K\"ahler metric itself given by Ivanov & Rocek \cite{IR96}. We show that the ALE spaces are examples of hyper-K\"ahler metrics admitting three tri-holomorphic Killing spinors. These metrics are in this sense analogous to the 'finite gap' solutions in soliton theory. Finally we extend the concept of a hierarchy from that of \cite{DM00} for the four-dimensional hyper-K\"ahler equations to a generalisation of the conformal anti-self-duality equations and briefly discuss hidden symmetries for these equations.Comment: Final version. To appear in the August 2003 special issue of JMP on `Integrability, Topological Solitons, and Beyond

    Continuity Culture: A Key Factor for Building Resilience and Sound Recovery Capabilities

    Get PDF
    This article investigates the extent to which Jordanian service organizations seek to establish continuity culture through testing, training, and updating of their business continuity plans. A survey strategy was adopted in this research. Primary and secondary data were used. Semistructured interviews were conducted with five senior managers from five large Jordanian service organizations registered with the Amman Stock Exchange. The selection of organizations was made on the basis of simple random sampling. Interviews targeted the headquarters only in order to obtain a homogenous sample. Three out of five organizations could be regarded as crisis prepared and have better chances for recovery. The other two organizations exhibited characteristics of standard practice that only emphasizes the recovery aspect of business continuity management (BCM), while paying less attention to establishing resilient cultures and embedding BCM. The findings reveal that the ability to recover following major incidents can be improved by embedding BCM in the culture of the organization and by making BCM an enterprise-wide process. This is one of few meticulous studies that have been undertaken in the Middle East and the first in Jordan to investigate the extent to which service organizations focus on embedding BCM in the organizational culture
    corecore