69 research outputs found

    Threshold-Dependent BMP-Mediated Repression: A Model for a Conserved Mechanism That Patterns the Neuroectoderm

    Get PDF
    Subdivision of the neuroectoderm into three rows of cells along the dorsal-ventral axis by neural identity genes is a highly conserved developmental process. While neural identity genes are expressed in remarkably similar patterns in vertebrates and invertebrates, previous work suggests that these patterns may be regulated by distinct upstream genetic pathways. Here we ask whether a potential conserved source of positional information provided by the BMP signaling contributes to patterning the neuroectoderm. We have addressed this question in two ways: First, we asked whether BMPs can act as bona fide morphogens to pattern the Drosophila neuroectoderm in a dose-dependent fashion, and second, we examined whether BMPs might act in a similar fashion in patterning the vertebrate neuroectoderm. In this study, we show that graded BMP signaling participates in organizing the neural axis in Drosophila by repressing expression of neural identity genes in a threshold-dependent fashion. We also provide evidence for a similar organizing activity of BMP signaling in chick neural plate explants, which may operate by the same double negative mechanism that acts earlier during neural induction. We propose that BMPs played an ancestral role in patterning the metazoan neuroectoderm by threshold-dependent repression of neural identity genes

    A TRPV Channel Modulates C. elegans Neurosecretion, Larval Starvation Survival, and Adult Lifespan

    Get PDF
    For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1) stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV) channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion

    Editors’ Favorites of 2017

    No full text

    Editors’ Favorites of 2016

    No full text

    Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: implications for improving outcomes.

    Get PDF
    BACKGROUND:  Cryptococcal meningitis (CM) is a leading cause of death in individuals infected with human immunodeficiency virus (HIV). Identifying factors associated with mortality informs strategies to improve outcomes. METHODS:  Five hundred one patients with HIV-associated CM were followed prospectively for 10 weeks during trials in Thailand, Uganda, Malawi, and South Africa. South African patients (n = 266) were followed for 1 year. Similar inclusion/exclusion criteria were applied at all sites. Logistic regression identified baseline variables independently associated with mortality. RESULTS:  Mortality was 17% at 2 weeks and 34% at 10 weeks. Altered mental status (odds ratio [OR], 3.1; 95% confidence interval [CI], 1.7-5.9), high cerebrospinal fluid (CSF) fungal burden (OR, 1.4 per log10 colony-forming units/mL increase; 95% CI, 1.0-1.8), older age (>50 years; OR, 3.9; 95% CI, 1.4-11.1), high peripheral white blood cell count (>10 × 10(9) cells/L; OR, 8.7; 95% CI, 2.5-30.2), fluconazole-based induction treatment, and slow clearance of CSF infection were independently associated with 2-week mortality. Low body weight, anemia (hemoglobin <7.5 g/dL), and low CSF opening pressure were independently associated with mortality at 10 weeks in addition to altered mental status, high fungal burden, high peripheral white cell count, and older age. In those followed for 1 year, overall mortality was 41%. Immune reconstitution inflammatory syndrome occurred in 13% of patients and was associated with 2-week CSF fungal burden (P = .007), but not with time to initiation of antiretroviral therapy (ART). CONCLUSIONS:  CSF fungal burden, altered mental status, and rate of clearance of infection predict acute mortality in HIV-associated CM. The results suggest that earlier diagnosis, more rapidly fungicidal amphotericin-based regimens, and prompt immune reconstitution with ART are priorities for improving outcomes
    corecore