1,406 research outputs found

    NSMR: Its Image, Direction and Future

    Get PDF
    The following speech was presented by Dr. Lindsey, Chairman of the University of Alabama Department of Comparative Medicine, at the Annual Board Meeting of the National Society for Medical Research (NSMR), Chicago, Illinois, November 10, 1979

    Evidence that two phenotypically distinct mouse PKD mutations, bpk and jcpk, are allelic

    Get PDF
    Evidence that two phenotypically distinct mouse PKD mutations, bpk and jcpk, are allelic. Numerous mouse models of polycystic kidney disease (PKD) have been described. All of these diseases are transmitted as single recessive traits and in most, the phenotypic severity is influenced by the genetic background. However, based on their genetic map positions, none of these loci appears to be allelic and none are candidate modifier loci for any other mouse PKD mutation. Previously, we have described the mouse bpk mutation, a model that closely resembles human autosomal recessive polycystic kidney disease. We now report that the bpk mutation maps to a 1.6 CM interval on mouse Chromosome 10, and that the renal cystic disease severity in our intersubspecific intercross progeny is influenced by the genetic background. Interestingly, bpk co-localizes with jcpk, a phenotyp-ically-distinct PKD mutation, and complementation testing indicates that the bpk and jcpk mutations are allelic. These data imply that distinct PKD phenotypes can result from different mutations within a single gene. In addition, based on its map position, the bpk locus is a candidate genetic modifier for jck, a third phenotypically-distinct PKD mutation

    Refining the transcriptome of the human malaria parasite Plasmodium falciparum using amplification-free RNA-seq

    Get PDF
    Abstract: Background: Plasmodium parasites undergo several major developmental transitions during their complex lifecycle, which are enabled by precisely ordered gene expression programs. Transcriptomes from the 48-h blood stages of the major human malaria parasite Plasmodium falciparum have been described using cDNA microarrays and RNA-seq, but these assays have not always performed well within non-coding regions, where the AT-content is often 90–95%. Results: We developed a directional, amplification-free RNA-seq protocol (DAFT-seq) to reduce bias against AT-rich cDNA, which we have applied to three strains of P. falciparum (3D7, HB3 and IT). While strain-specific differences were detected, overall there is strong conservation between the transcriptional profiles. For the 3D7 reference strain, transcription was detected from 89% of the genome, with over 78% of the genome transcribed into mRNAs. We also find that transcription from bidirectional promoters frequently results in non-coding, antisense transcripts. These datasets allowed us to refine the 5′ and 3′ untranslated regions (UTRs), which can be variable, long (> 1000 nt), and often overlap those of adjacent transcripts. Conclusions: The approaches applied in this study allow a refined description of the transcriptional landscape of P. falciparum and demonstrate that very little of the densely packed P. falciparum genome is inactive or redundant. By capturing the 5′ and 3′ ends of mRNAs, we reveal both constant and dynamic use of transcriptional start sites across the intraerythrocytic developmental cycle that will be useful in guiding the definition of regulatory regions for use in future experimental gene expression studies

    Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells

    Get PDF
    It has been shown that testicular germ cell development is critically dependent upon somatic cell activity but, conversely, the extent to which germ cells normally regulate somatic cell function is less clear. This study was designed, therefore, to examine the effect of germ cell depletion on Sertoli cell and Leydig cell transcript levels. Mice were treated with busulphan to deplete the germ cell population and levels of mRNA transcripts encoding 26 Sertoli cell-specific proteins and 6 Leydig cell proteins were measured by real-time PCR up to 50 days after treatment. Spermatogonia were lost from the testis between 5 and 10 days after treatment, while spermatocytes were depleted after 10 days and spermatids after 20 days. By 30 days after treatment, most tubules were devoid of germ cells. Circulating FSH and intratesticular testosterone were not significantly affected by treatment. Of the 26 Sertoli cell markers tested, 13 showed no change in transcript levels after busulphan treatment, 2 showed decreased levels, 9 showed increased levels and 2 showed a biphasic response. In 60% of cases, changes in transcript levels occurred after the loss of the spermatids. Levels of mRNA transcripts encoding Leydig cell-specific products related to steroidogenesis were unaffected by treatment. Results indicate (1) that germ cells play a major and widespread role in the regulation of Sertoli cell activity, (2) most changes in transcript levels are associated with the loss of spermatids and (3) Leydig cell steroidogenesis is largely unaffected by germ cell ablation

    Humic acid interferes with species recognition in zebrafish (Danio rerio)

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Chemical Ecology 33 (2007): 2090-2096, doi:10.1007/s10886-007-9377-z.Few studies have addressed how chemosensation may be impaired by chemical alterations of the environment and anthropogenic disturbance. Humic acid (HA) is a pervasive, naturally occurring organic derivative found in aquatic and terrestrial environments; human activity, however, can lead to elevated levels of HA. Recent studies suggest that environments that contain high levels of HA may hinder chemical communication. We tested the ability of adult zebrafish (Danio rerio) to discriminate between conspecific and heterospecific urinary chemical cues found in the presence and absence of HA. We show that high humic acid levels (200 mg/l) can impair the ability to differentiate conspecifics from heterospecifics. We also found that zebrafish prefer untreated water over HA-treated water. These findings suggest that, in addition to human-produced synthetic compounds, changes in the abundance of naturally occurring substances may also negatively impact natural behaviors in aquatic species by disturbing the sensory environment

    Systematic Two-Hybrid and Comparative Proteomic Analyses Reveal Novel Yeast Pre-mRNA Splicing Factors Connected to Prp19

    Get PDF
    Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1∶1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold
    corecore