144 research outputs found

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Risk factors for delay in symptomatic presentation of leukaemia, lymphoma and myeloma

    Get PDF
    Background: UK policy aims to improve cancer outcomes by promoting early diagnosis, which for many haematological malignancies is particularly challenging as the pathways leading to diagnosis can be difficult and prolonged. Methods: A survey about symptoms was sent to patients in England with acute leukaemia, chronic lymphocytic leukaemia (CLL), chronic myeloid leukaemia (CML), myeloma and non-Hodgkin lymphoma (NHL). Symptoms and barriers to first help seeking were examined for each subtype, along with the relative risk of waiting >3 months’ time from symptom onset to first presentation to a doctor, controlling for age, sex and deprivation. Results: Of the 785 respondents, 654 (83.3%) reported symptoms; most commonly for NHL (95%) and least commonly for CLL (67.9%). Some symptoms were frequent across diseases while others were more disease-specific. Overall, 16% of patients (n=114) waited >3 months before presentation; most often in CML (24%) and least in acute leukaemia (9%). Significant risk factors for >3 months to presentation were: night sweats (particularly CLL and NHL), thirst, abdominal pain/discomfort, looking pale (particularly acute leukaemias), and extreme fatigue/tiredness (particularly CML and NHL); and not realising symptom(s) were serious. Conclusions: These findings demonstrate important differences by subtype, which should be considered in strategies promoting early presentation. Not realising the seriousness of some symptoms indicates a worrying lack of public awareness

    Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections.

    Get PDF
    Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386-395

    A systematic review of grandparents’ influence on grandchildren’s cancer risk factors

    Get PDF
    Many lifestyle patterns are established when children are young. Research has focused on the potential role of parents as a risk factor for non communicable disease in children, but there is limited investigation of the role of other caregivers, such as grandparents. The aim of this review was to identify and synthesise evidence for any influence grandparents’ care practices may have on their grandchildren’s long term cancer risk factors. A systematic review was carried out with searches across four databases (MEDLINE, Embase, Web of Science, PsycINFO) as well as searches of reference lists and citing articles, and Google Scholar. Search terms were based on six areas of risk that family care could potentially influence–weight, diet, physical activity, tobacco, alcohol and sun exposure. All study designs were included, as were studies that provided an indication of the interaction of grandparents with their grandchildren. Studies were excluded if grandparents were primary caregivers and if children had serious health conditions. Study quality was assessed using National Institute for Health and Care Excellence checklists. Grandparent impact was categorised as beneficial, adverse, mixed or as having no impact. Due to study heterogeneity a meta-analysis was not possible. Qualitative studies underwent a thematic synthesis of their results. Results from all included studies indicated that there was a sufficient evidence base for weight, diet, physical activity and tobacco studies to draw conclusions about grandparents’ influence. One study examined alcohol and no studies examined sun exposure. Evidence indicated that, overall, grandparents had an adverse impact on their grandchildren’s cancer risk factors. The theoretical work in the included studies was limited. Theoretically underpinned interventions designed to reduce these risk factors must consider grandparents’ role, as well as parents’, and be evaluated robustly to inform the evidence base further

    The Telomere Binding Protein TRF2 Induces Chromatin Compaction

    Get PDF
    Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures
    corecore