112 research outputs found
They made a career with their opinions: An exploratory study of reader perception of credibility of high-status bloggers
The 21st century has developed so quickly digitally that information spreads so quickly through e-word-of-mouth. To effectively communicate, companies have to find a way to spread their own messages in a fast, unique way to entice their publics. In the fashion industry, instead of using their own websites and social media, which can be viewed as untrustworthy, many companies turn to partnerships with high-status (career) bloggers in order to reach more people. These high-status bloggers have made careers out of their sites, bringing in a salary through advertising, sponsored content and brand partnerships. The purpose of this study was to find if these bloggers were still seen as a credible source for information when readers knew about their ‘status’ and earnings, especially how their salary was made. Initial research made the researcher suspect that the bloggers would not be seen as a credible source. However, the participants focused their responses on their feelings of pride for these amateurs who had made a career out of their opinions, and that as long as they remained as open and authentic as when their blog first started, the bloggers’ credibility would remain intact. This exploratory research found that the source credibility theory remained true in this digital context, and also provides different sub-factors of credibility for the source of career blogs
The Parkinson\u27s Disease Protein α-Synuclein Disrupts Cellular Rab Homeostasis
α-Synuclein (α-syn), a protein of unknown function, is the most abundant protein in Lewy bodies, the histological hallmark of Parkinson\u27s disease (PD). In yeast α-syn inhibits endoplasmic reticulum (ER)-to-Golgi (ER→Golgi) vesicle trafficking, which is rescued by overexpression of a Rab GTPase that regulates ER→Golgi trafficking. The homologous Rab1 rescues α-syn toxicity in dopaminergic neuronal models of PD. Here we investigate this conserved feature of α-syn pathobiology. In a cell-free system with purified transport factors α-syn inhibited ER→Golgi trafficking in an α-syn dose-dependent manner. Vesicles budded efficiently from the ER, but their docking or fusion to Golgi membranes was inhibited. Thus, the in vivo trafficking problem is due to a direct effect of α-syn on the transport machinery. By ultrastructural analysis the earliest in vivo defect was an accumulation of morphologically undocked vesicles, starting near the plasma membrane and growing into massive intracellular vesicular clusters in a dose-dependent manner. By immunofluorescence/immunoelectron microscopy, these clusters were associated both with α-syn and with diverse vesicle markers, suggesting that α-syn can impair multiple trafficking steps. Other Rabs did not ameliorate α-syn toxicity in yeast, but RAB3A, which is highly expressed in neurons and localized to presynaptic termini, and RAB8A, which is localized to post-Golgi vesicles, suppressed toxicity in neuronal models of PD. Thus, α-syn causes general defects in vesicle trafficking, to which dopaminergic neurons are especially sensitive
Compounds from an Unbiased Chemical Screen Reverse Both Er-to-Golgi Trafficking Defects and Mitochondrial Dysfunction in Parkinson's Disease Models
α-Synuclein (α-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because α-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson’s disease (PD). We previously created a yeast model of α-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to α-syn expression. We also uncovered a core group of proteins with diverse activities related to α-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of α-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress α-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of α-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced α-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of α-syn foci, re-established ER-to-Golgi trafficking and ameliorated α-syn-mediated damage to mitochondria. They also corrected the toxicity of α-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of α-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.MGH/MIT Morris Udall Center of Excellence in Parkinson Disease Research (NS038372)Michael J. Fox Foundation for Parkinson's ResearchHoward Hughes Medical InstituteUnited States. National Institutes of Health (NS049221)American Parkinson Disease Association, Inc
Capacitating Community: The Writing Innovation Symposium
The topic of this symposium, capacitating community, invites CLJ readers to consider what makes community possible. This piece showcases one means, small conferences, via a retrospective on the Writing Innovation Symposium (WIS), a regional event with national scope that has hosted writers and writing educators annually in Milwaukee, WI, since 2018. Through a quilted conversation pieced from hours of small-group discussion, twenty-nine participants across academic and nonacademic ranks, roles, and ranges of experience offer insight into the WIS as well as the nature and value of professional community
Capacitating Community: The Writing Innovation Symposium
The topic of this symposium, capacitating community, invites CLJ readers to consider what makes a community possible. This piece showcases one means, small conferences, via a retrospective on the Writing Innovation Symposium (WIS), a regional event with national scope that has hosted writers and writing educators annually in Milwaukee, WI, since 2018. Through a quilted conversation pieced from hours of small-group discussion, twenty-nine participants across academic and nonacademic ranks, roles, and ranges of experience offer insight into the WIS as well as the nature and value of professional community
TorsinA and the TorsinA-Interacting Protein Printor Have No Impact on Endoplasmic Reticulum Stress or Protein Trafficking in Yeast
Early-onset torsion dystonia is a severe, life-long disease that leads to loss of motor control and involuntary muscle contractions. While the molecular etiology of the disease is not fully understood, a mutation in an AAA+ ATPase, torsinA, has been linked to disease onset. Previous work on torsinA has shown that it localizes to the endoplasmic reticulum, where there is evidence that it plays roles in protein trafficking, and potentially also protein folding. Given the high level of evolutionary conservation among proteins involved in these processes, the ability of human such proteins to function effectively in yeast, as well as the previous successes achieved in examining other proteins involved in complex human diseases in yeast, we hypothesized that Saccharomyces cerevisiae might represent a useful model system for studying torsinA function and the effects of its mutants. Since torsinA is proposed to function in protein homeostasis, we tested cells for their ability to respond to various stressors, using a fluorescent reporter to measure the unfolded protein response, as well as their rate of protein secretion. TorsinA did not impact these processes, even after co-expression of its recently identified interacting partner, printor. In light of these findings, we propose that yeast may lack an additional cofactor necessary for torsinA function or proteins required for essential post-translational modifications of torsinA. Alternatively, torsinA may not function in endoplasmic reticulum protein homeostasis. The strains and assays we describe may provide useful tools for identifying and investigating these possibilities and are freely available.Howard Hughes Medical InstituteBachmann-Strauss Dystonia and Parkinson Foundatio
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
- …