829 research outputs found

    Internal motion at the chloride binding sites of human serum albumin by NMR relaxation studies

    Get PDF
    Al pati d'aquest, s'hi alça una clàssica xemeneia industrial.Pla general de l'entrada al recinte.Es conserva l'estructura de les fàbriques tèxtils substituïdes ara per empreses del sector artístic, com l'Estudi Mariscal.S'esta estudiant obrir el c. Fluvià

    Theoretical modeling of defect segregation and space-charge formation in the BaZrO3 (210) 001 tilt grain boundary

    Get PDF
    Density-functional theory (DFT) has been used to determine the structure and interface energy of different rigid body translations (RBTs) of the (210)10011 grain boundary (GB) in BaZrO3. There exist several different stable structures with almost equally low interfacial energy. Segregation energies of protons and oxygen vacancies have been determined for the most stable (210)10011 grain boundary structure. The results suggest that both defect species favor segregation to the same site at the boundary interface with minimum segregation energies of - 1.45 eV and - 1.32 eV for vacancies and protons respectively. The segregation energies have been used in a thermodynamic space-charge model to obtain equilibrium defect concentrations and space-charge potentials at a 10% dopant concentration. Space-charge,potential barriers around 0.65 V were obtained at intermediate temperatures under hydrated conditions, where protons are the main contributor to the excess core charge. The potential is slightly lower under dry conditions. (C) 2013 Elsevier B.V. All rights reserved

    Associating polymer-surfactant systems

    Get PDF
    Some recent illustrations of the phase behavior of polymer-amphiphile systems in solution are presented. Surfactant-polymer association is demonstrated for various amphiphilic synthetic and biological polymers both on a macroscopic and on a single molecular level

    BPS partition functions in N = 4 Yang-Mills theory on T^4

    Full text link
    We consider N = 4 Yang-Mills theory on a flat four-torus with the R-symmetry current coupled to a flat background connection. The partition function depends on the coupling constant of the theory, but when it is expanded in a power series in the R-symmetry connection around the loci at which one of the supersymmetries is unbroken, the constant and linear terms are in fact independent of the coupling constant and can be computed at weak coupling for all non-trivial 't Hooft fluxes. The case of a trivial 't Hooft flux is difficult because of infrared problems, but the corresponding terms in the partition function are uniquely determined by S-duality.Comment: 23 pages, v2 Minor correction

    Network Formation of Catanionic Vesicles and Oppositely Charged Polyelectrolytes. Effect of Polymer Charge Density and Hydrophobic Modification

    Get PDF
    In nonequimolar solutions of a cationic and an anionic surfactant, vesicles bearing a net charge can be spontaneously formed and apparently exist as thermodynamically stable aggregates. These vesicles can associate strongly with polymers in solution by means of hydrophobic and/or electrostatic interactions. In the current work, we have investigated the rheological and microstructural properties of mixtures of cationic polyelectrolytes and net anionic sodium dodecyl sulfate/didodecyldimethylammonium bromide vesicles. The polyelectrolytes consist of two cationic cellulose derivatives with different charge densities; the lowest charge density polymer contains also hydrophobic grafts, with the number of charges equal to the number of grafts. For both systems, polymer−vesicle association leads to a major increase in viscosity and to gel-like behavior, but the viscosity effects are more pronounced for the less charged, hydrophobically modified polymer. Evaluation of the frequency dependence of the storage and loss moduli for the two systems shows further differences in behavior: while the more long-lived cross-links occur for the more highly charged hydrophilic polymer, the number of cross-links is higher for the hydrophobically modified polymer. Microstructure studies by cryogenic transmission electron microscopy indicate that the two polymers affect the vesicle stability in different ways. With the hydrophobically modified polymer, the aggregates remain largely in the form of globular vesicles and faceted vesicles (polygon-shaped vesicles with largely planar regions). For the hydrophilic polycation, on the other hand, the surfactant aggregate structure is more extensively modified: first, the vesicles change from a globular to a faceted shape; second, there is opening of the bilayers leading to holey vesicles and ultimately to considerable vesicle disruption leading to planar bilayer, disklike aggregates. The faceted shape is tentatively attributed to a crystallization of the surfactant film in the vesicles. It is inferred that a hydrophobically modified polyion with relatively low charge density can better stabilize vesicles due to formation of molecularly mixed aggregates, while a hydrophilic polyion with relatively high charge density associates so strongly to the surfactant films, due to strong electrostatic interactions, that the vesicles are more perturbed and even disrupted

    Intense tera-hertz laser driven proton acceleration in plasmas

    Get PDF
    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength (k ¼ 350 lm), such as the k2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration

    Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments

    Full text link
    The recently developed technique of Cyclotron Radiation Emission Spectroscopy (CRES) uses frequency information from the cyclotron motion of an electron in a magnetic bottle to infer its kinetic energy. Here we derive the expected radio frequency signal from an electron in a waveguide CRES apparatus from first principles. We demonstrate that the frequency-domain signal is rich in information about the electron's kinematic parameters, and extract a set of measurables that in a suitably designed system are sufficient for disentangling the electron's kinetic energy from the rest of its kinematic features. This lays the groundwork for high-resolution energy measurements in future CRES experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure

    Asymmetric protonation of EmrE

    Get PDF
    The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its “active-site” residues—glutamate 14 (Glu14) from each subunit—must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with (1)H-(15)N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809
    corecore