188 research outputs found

    Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    Get PDF
    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using Flory-Huggins X parameters. The strong qualitative comparison with experimental data proves that the Flory-Huggins approach is reasonable. The free energy of insertion of a proteinlike molecule into the micelle is nonmonotonic: there is (i) a small repulsion when the protein is inside the corona; the height of the insertion barrier is determined by the local osmotic pressure and the elastic deformation of the core, (ii) a local minimum occurs when the protein molecule is at the core-corona interface; the depth (a few kBT's) is related to the interfacial tension at the core-corona interface and (iii) a steep repulsion (several kBT) when part of the protein molecule is dragged into the core. Hence, the protein molecules reside preferentially at the core-corona interface and the absorption as well as the release of the protein molecules has annealed rather than quenched characteristics. Upon an increase of the ionic strength it is possible to reach a critical micellization ionic (CMI) strength. With increasing ionic strength the aggregation numbers decrease strongly and only few proteins remain associated with the micelles near the CM

    Incorporation of proteins into complex coacervates

    Get PDF
    Complex coacervates have found a renewed interest in the past few decades in various fields such as food and personal care products, membraneless cellular compartments, the origin of life, and, most notably, as a mode of transport and stabilization of drugs. Here, we describe general methods for characterizing the phase behavior of complex coacervates and quantifying the incorporation of proteins into these phase separated materials

    Entropy of water and the temperature-induced stiffening of amyloid networks

    Get PDF
    In water, networks of semi-flexible fibrils of the protein α\alpha-synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible crosslinking enables us to quantify the endothermic binding enthalpy and an estimate the effective size of hydrophobic patches on the fibril surface.Comment: 13 pages, 6 figure

    The Extraction and Recovery of Volatile Fatty Acids with a Complex Coacervate

    Get PDF
    Rising concerns regarding the depletion of natural gas and oil reserves and the expanding will to transit to more sustainable economies. o Alternative sources of chemicals are needed o One of the suggested solutions is obtaining chemicals, e.g. volatile fatty acids or VFAs, via the fermentation of organic waste streams. o Traditional separation techniques are not economically feasible. We attempt to provide an alternative solution using complex coacervates

    Arrested segregative phase separation in capillary tubes

    Get PDF
    Phase separation in a capillary tube with one of the phases fully wetting the capillary wall is arrested when the typical size of the phase domains reaches the value of the diameter of the tube. The arrested state consists of an alternating sequence of concave-capped and convex-capped cylindrical domains, called "plugs," "bridges," or "lenses," of wetting and nonwetting phase, respectively. A description of this arrested plug state for an aqueous mixture of two polymer solutions is the subject of this work. A phase separating system consisting of two incompatible polymers dissolved in water was studied. The phase volume ratio was close to unity. The initial state from which plugs evolve is characterized by droplets of wetting phase in a continuous nonwetting phase. Experiments show the formation of plugs by a pathway that differs from the theoretically well-described instabilities in the thickness of a fluid thread inside a confined fluid cylinder. Plugs appear to form after the wetting layer (the confined fluid cylinder) has become unstable after merging of droplet with the wetting layer. The relative density of the phases could be set by the addition of salt, enabling density matching. As a consequence, the capillary length can in principle be made infinitely large and the Bond number (which represents the force of gravity relative to the capillary force) zero, without considerably changing the interfacial tension. Using the possibility of density matching, the relations among capillary length and capillary diameter on the one hand, and the presence of plugs and their average size on the other were studied. It was found that stable plugs are present when the capillary radius does not exceed a certain value, which is probably smaller than the capillary length. However, the average plug size is independent of capillary length. At constant capillary length, average plug size was found to scale with the capillary diameter to a power 1.3, significantly higher than the expected value of 1. Plug sizes had a polydispersity between 1.1 and 1.2 for all capillary radii for which this number could be reliably determined, suggesting a universal plug size distribution. Within plug sequences, size correlations were found between plugs with one to three plugs in between. This suggests the presence of an additional length scal
    corecore