700 research outputs found

    A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation

    Get PDF
    Rodent hippocampal population codes represent important spatial information about the environment during navigation. Several computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. Here we extend our previous work and propose a nonparametric Bayesian approach to infer rat hippocampal population codes during spatial navigation. To tackle the model selection problem, we leverage a nonparametric Bayesian model. Specifically, to analyze rat hippocampal ensemble spiking activity, we apply a hierarchical Dirichlet process-hidden Markov model (HDP-HMM) using two Bayesian inference methods, one based on Markov chain Monte Carlo (MCMC) and the other based on variational Bayes (VB). We demonstrate the effectiveness of our Bayesian approaches on recordings from a freely-behaving rat navigating in an open field environment. We find that MCMC-based inference with Hamiltonian Monte Carlo (HMC) hyperparameter sampling is flexible and efficient, and outperforms VB and MCMC approaches with hyperparameters set by empirical Bayes

    Variational Sequential Monte Carlo

    Full text link
    Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the variational sequential Monte Carlo (VSMC) family, and show how to optimize it in variational inference. VSMC melds variational inference (VI) and sequential Monte Carlo (SMC), providing practitioners with flexible, accurate, and powerful Bayesian inference. The VSMC family is a variational family that can approximate the posterior arbitrarily well, while still allowing for efficient optimization of its parameters. We demonstrate its utility on state space models, stochastic volatility models for financial data, and deep Markov models of brain neural circuits

    Caribou Trail Systems in Northeastern Alaska

    Get PDF
    Trails left by caribou on their spring, summer and fall ranges persist for many years and therefore provide useful record of patterns of caribou movement. Trails covering 15,000 km² of northeastern Alaska were mapped from light aircraft, and found to correspond with present patterns of movement of the Porcupine caribou herd. Caribou follow contours in hilly terrain; use gentle slopes and passes; travel in narrower lanes in steep areas; course natural obstacles before crossing them; and follow previous caribou trails. Areas of special importance to caribou because of funneling of their movements are identifiable from trail maps, which are therefore useful tools in the planning of proposed structures in caribou ranges

    Simple transporter trafficking model for amphetamine-induced dopamine efflux

    Full text link
    Amphetamine and its derivatives are important drugs of abuse causing both short-term excitatory and long-term addictive effects. The short-term excitatory effects are linked to amphetamine's ability to maintain high levels of dopamine (DA) outside the cell both by inhibiting DA reuptake after synaptic transmission and by enhancing the efflux of DA from the dopaminergic cells. The molecular mechanisms by which amphetamine elicits the efflux of DA and similar monoamines are still unclear. Recent literature data suggest that trafficking of the monoamine transporters is a phenomenon that underlies observed changes in amphetamine-induced monoamine reuptake and efflux. We develop an ordinary differential equation model incorporating the diverse mechanistic details behind amphetamine-induced DA efflux and demonstrate its utility in describing our experimental data. We also demonstrate an experimental method to track the time-varying concentration of membrane-bound transporter molecules from the DA efflux data. The good fit between our model and the experimental data supports the hypothesis that amphetamine-induced transporter trafficking is necessary to produce extended efflux of DA. This model can explain the relative significance of different processes associated with DA efflux at different times and at different concentration ranges of amphetamine and DA. Synapse 61:500–514, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56075/1/20390_ftp.pd

    Psychological and behavioural impact of returning personal results from whole-genome sequencing: the HealthSeq project

    Get PDF
    Providing ostensibly healthy individuals with personal results from whole-genome sequencing could lead to improved health and well-being via enhanced disease risk prediction, prevention, and diagnosis, but also poses practical and ethical challenges. Understanding how individuals react psychologically and behaviourally will be key in assessing the potential utility of personal whole-genome sequencing. We conducted an exploratory longitudinal cohort study in which quantitative surveys and in-depth qualitative interviews were conducted before and after personal results were returned to individuals who underwent whole-genome sequencing. The participants were offered a range of interpreted results, including Alzheimer’s disease, type 2 diabetes, pharmacogenomics, rare disease-associated variants, and ancestry. They were also offered their raw data. Of the 35 participants at baseline, 29 (82.9%) completed the 6-month follow-up. In the quantitative surveys, test-related distress was low, although it was higher at 1-week than 6-month follow-up (Z=2.68, P=0.007). In the 6-month qualitative interviews, most participants felt happy or relieved about their results. A few were concerned, particularly about rare disease-associated variants and Alzheimer’s disease results. Two of the 29 participants had sought clinical follow-up as a direct or indirect consequence of rare disease-associated variants results. Several had mentioned their results to their doctors. Some participants felt having their raw data might be medically useful to them in the future. The majority reported positive reactions to having their genomes sequenced, but there were notable exceptions to this. The impact and value of returning personal results from whole-genome sequencing when implemented on a larger scale remains to be seen

    Time-Dependent Statistical and Correlation Properties of Neural Signals during Handwriting

    Get PDF
    To elucidate the cortical control of handwriting, we examined time-dependent statistical and correlational properties of simultaneously recorded 64-channel electroencephalograms (EEGs) and electromyograms (EMGs) of intrinsic hand muscles. We introduced a statistical method, which offered advantages compared to conventional coherence methods. In contrast to coherence methods, which operate in the frequency domain, our method enabled us to study the functional association between different neural regions in the time domain. In our experiments, subjects performed about 400 stereotypical trials during which they wrote a single character. These trials provided time-dependent EMG and EEG data capturing different handwriting epochs. The set of trials was treated as a statistical ensemble, and time-dependent correlation functions between neural signals were computed by averaging over that ensemble. We found that trial-to-trial variability of both the EMGs and EEGs was well described by a log-normal distribution with time-dependent parameters, which was clearly distinguished from the normal (Gaussian) distribution. We found strong and long-lasting EMG/EMG correlations, whereas EEG/EEG correlations, which were also quite strong, were short-lived with a characteristic correlation durations on the order of 100 ms or less. Our computations of correlation functions were restricted to the spectral range (13–30 Hz) of EEG signals where we found the strongest effects related to handwriting. Although, all subjects involved in our experiments were right-hand writers, we observed a clear symmetry between left and right motor areas: inter-channel correlations were strong if both channels were located over the left or right hemispheres, and 2–3 times weaker if the EEG channels were located over different hemispheres. Although we observed synchronized changes in the mean energies of EEG and EMG signals, we found that EEG/EMG correlations were much weaker than EEG/EEG and EMG/EMG correlations. The absence of strong correlations between EMG and EEG signals indicates that (i) a large fraction of the EEG signal includes electrical activity unrelated to low-level motor variability; (ii) neural processing of cortically-derived signals by spinal circuitry may reduce the correlation between EEG and EMG signals

    Montecarlo simulation of the role of defects as the melting mechanism

    Full text link
    We study in this paper the melting transition of a crystal of fcc structure with the Lennard-Jones potential, by using isobaric-isothermal Monte Carlo simulations. Local and collective updates are sequentially used to optimize the convergence. We show the important role played by defects in the melting mechanism in favor of modern melting theories.Comment: 6 page, 10 figures included. Corrected version to appear in Phys. Rev.

    Body Mass Index Associations Between Mother and Offspring from Birth to Age 18: The Fels Longitudinal Study

    Get PDF
    Background: Parental obesity is a known determinant of childhood obesity. Previous research has shown a strong maternal influence on body mass index (BMI) during infancy and early childhood. Objectives: The purpose of this research was to investigate the BMI associations between mother and offspring from birth to age 18 years. Methods: Participants were selected from the Fels Longitudinal Study. The current study sample includes 427 (215 mother/son and 212 mother/daughter) mother/child pairs. These pairs are repeatedly measured at multiple age groups in children, resulting in a total of 6,263 (3,215 mother/son, 3,048 mother/daughter) observations for data analysis. Inclusion criteria were children with measured height and weight for BMI collected at ages 0 to 18 years and their mother with BMI data. Maternal influences of BMI on offspring BMI from birth to early adulthood were analyzed by Spearman correlations and linear regression analyses. Results: Mother/son BMI correlations became statistically significant (p ≤ 0.05) at age 5–6 years and were significant through puberty and into early adulthood at age 18 years. Mother/daughter correlations became significant at age 1.5 years and also continued through adolescence, puberty and early adulthood at age 18 years. Associations persisted after the study sample was grouped into life stages and adjusted for decade of birth and parity. Conclusions: The mother/daughter relationship was more strongly correlated than the mother/son relationship and also became statistically significant at an earlier age than boys
    corecore