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Abstract

To elucidate the cortical control of handwriting, we examined time-dependent statistical and correlational properties of
simultaneously recorded 64-channel electroencephalograms (EEGs) and electromyograms (EMGs) of intrinsic hand muscles.
We introduced a statistical method, which offered advantages compared to conventional coherence methods. In contrast to
coherence methods, which operate in the frequency domain, our method enabled us to study the functional association
between different neural regions in the time domain. In our experiments, subjects performed about 400 stereotypical trials
during which they wrote a single character. These trials provided time-dependent EMG and EEG data capturing different
handwriting epochs. The set of trials was treated as a statistical ensemble, and time-dependent correlation functions
between neural signals were computed by averaging over that ensemble. We found that trial-to-trial variability of both the
EMGs and EEGs was well described by a log-normal distribution with time-dependent parameters, which was clearly
distinguished from the normal (Gaussian) distribution. We found strong and long-lasting EMG/EMG correlations, whereas
EEG/EEG correlations, which were also quite strong, were short-lived with a characteristic correlation durations on the order
of 100 ms or less. Our computations of correlation functions were restricted to the b spectral range (13–30 Hz) of EEG
signals where we found the strongest effects related to handwriting. Although, all subjects involved in our experiments
were right-hand writers, we observed a clear symmetry between left and right motor areas: inter-channel correlations were
strong if both channels were located over the left or right hemispheres, and 2–3 times weaker if the EEG channels were
located over different hemispheres. Although we observed synchronized changes in the mean energies of EEG and EMG
signals, we found that EEG/EMG correlations were much weaker than EEG/EEG and EMG/EMG correlations. The absence of
strong correlations between EMG and EEG signals indicates that (i) a large fraction of the EEG signal includes electrical
activity unrelated to low-level motor variability; (ii) neural processing of cortically-derived signals by spinal circuitry may
reduce the correlation between EEG and EMG signals.
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Introduction

Since the first publication by D. Walter [1], the coherence

method, developed for the analysis of stationary random data in

linear systems (see, e.g., [2]), has been employed in hundreds of

papers dealing with the analysis of neural signals such as EEGs and

EMGs. In these publications, the level of coherence was used as a

measure of coupling between the processes generating neural

signals and of the functional association between neuronal

structures [3–6].

This analysis of relationships between neural signals is based on

computations of the coherence and phase of the two signals. For

Fourier harmonics, X (v) and Y (v), of two time-dependent

signals X (t) and Y (t), the coherence is defined as the square of the

modulus, C(v)~DP(v)D2, and the phase is defined as

W(v)~arctan½Im P(v)=Re P(v)�, of the complex coherence

function

P(v)~
X (v)Y �(v)

½X (v)X �(v)�1=2½Y (v)Y �(v)�1=2
ð1Þ
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Here, Re P and Im P stand for the real and imaginary parts of the

function P.

Signals X (t) and Y (t) can also be sliced into M disjoint

segments, fXj(t)g,fYj(t)g,j~1, . . . ,M, and the function P(v)

may be estimated as shown by Eq. (1) with auto- and cross-spectral

density functions computed for each segment and averaged over

M segments,

P(v)~

1
M

P
j

Xj(v)Y �j (v)

½ 1
M

P
j

Xj(v)X �j (v)�1=2½ 1
M

P
j

Yj(v)Y �j (v)�1=2
ð2Þ

Coherence is considered to be statistically significant if its

magnitude exceeds some value L. At any desired confidence level

a% (in the most cases a~95%), the confidence limit is estimated

[7] under a Gaussian assumption as:

L~1{ 1{
a

100

� � 1
M{1: ð3Þ

A relatively small number of segments, M, suffices to achieve any

desired confidence limit due to the exponential dependence of the

confidence limit on the number of segments.

Neural signals are obviously nonstationary. To address the

nonstationarity of biological signals, the coherence method has

been generalized [8] for wavelet harmonics [9]. Wavelet-based

methods allow a combined frequency- and time-domain repre-

sentation of nonstationary signals.

In this paper, we propose and discuss an alternative approach to

search for dynamical relationships between neural signals [10]. In

this method, which is broadly employed in statistics and, in

particular, in statistical physics, a relationship between two

random time-dependent signals x(t) and y(t) is determined by

the correlation function

C(t1,t2)*
ð

dxdy½x(t1){mx(t1)�½y(t2){my(t2)�p(x,y): ð4Þ

Here p(x,y) is the joint probability density function of two random

variables, mx and my are the corresponding mean values

mx(t)~
Ð

x(t)p(x)dx and my(t)~
Ð

x(t)p(y)dy, where p is the

probability density function. It should be emphasized that for

nonstationary systems, the time dependence of correlation

functions is determined not only by the time dependencies of the

signals themselves, but also by the time dependencies of the

probability density functions.

For two independent random variables, the joint probability

density function can be factorized, i.e., p(x,y)*p(x):p(y), and the

correlation function C vanishes.

The probability density functions of neural signals are not

known a priori. Therefore, one needs to have a sufficiently large

set (statistical ensemble) of neural signals fxj(t)g and fyj(t)g,
(j~1, . . . ,N ) recorded during N epochs - in our case, trials during

which a subject repeatedly performs an identical task - in order to

apply the statistical method. In this approach, the integration of

probability density functions in Eq. (4) is replaced by the ensemble

average over many trials,

C(t1,t2)*
1

N

XN

j~1

½xj(t1){mx(t1)�½yj(t2){my(t2)�, ð5Þ

where mx(t)~ 1
N

P
j xj(t) and my(t)~ 1

N

P
j yj(t) are the mean

values.

This expression becomes exact only in the limit when the

number of trials goes to infinity, N??. In our experiments the

number of trials was about 400, and we used Fisher’s theorem [11]

to compute the confidence interval for the correlation functions.

Here we applied this statistical method to an analysis of EEG

and EMG signals recorded during handwriting. Handwriting [12]

provides an excellent neuromuscular task for quantitative studies

of statistical and correlational properties of biological signals in the

time domain. Handwriting consists of relatively simple, stereo-

typed hand movements that involve two basic motor components:

firmly holding a pen by the fingers and moving the hand and the

fingers to produce written text. We recorded the mechanical

events of handwriting using a digitizing tablet that electronically

recorded each epoch when the pen touched the paper (pen-on-

paper period), and we simultaneously recorded the cortical EEG

and EMG of intrinsic muscles of the hand.

Our dataset allowed us (i) to align the mechanical events, EEG

signals and EMG signals associated with handwriting and (ii) to

divide all of these signals into trial segments that correspond to a

sequential set of epochs as each subject performed an identical

handwriting task. Our trials started 1000 ms before the first

moment when the pen touched the paper and ended 1000 ms

after this time. This precise temporal sequence enabled us to

compare statistical and correlation properties of neural signals

recorded before, during and after the actual pen-on-paper activity.

The recorded data consisted of N trials, each trial captured the

activity associated with a single handwritten letter. Each trial

contained EEGs recorded in neeg channels, and EMGs recorded

in nemg channels, i.e. in total, we obtained N|neeg|nemg data

files each of 2000 ms duration.

In contrast to the coherence methods used to study the

relationship between neural signals in the frequency domain, our

statistical method enabled us to study the statistical and

correlational properties of neural signals directly in the time

domain. That allows us to elucidate both dynamical patterns of

activity in different cortical areas and the functional relationships

between different cortical areas.

As in the case of EMG signals recorded from muscle groups

involved in handwriting [13], we found that trial-to-trial variability

of the ‘‘energy’’ of the EEGs recorded from the motor cortex area

had a log-normal distribution, which was clearly distinguishable

from the normal (Gaussian) distribution. The log-normal distri-

bution fitted the experimental data in all time intervals during a

trial, but its parameters - the mean value and dispersion -

depended on time. These two variables suffice to completely

describe both qualitatively and quantitatively the trial-to-trial

variability of neural signals during handwriting.

We also studied time-dependent EMG/EMG and EEG/EEG

correlations. We found strong and long-time EMG/EMG

correlations. Correlations between EEG signals over the motor

cortex area were also quite strong, but the correlations existed over

relatively short durations with characteristic correlation times on

the order of 100 ms or less. All subjects involved in our

experiments were right-handed and wrote with their dominant

hand. However, we observed equally strong inter-channel

correlations when both channels were located on either the left

or right hemispheres, while inter-hemispheric correlations were 2–

3 times weaker.

Although we observed task-related changes in the mean

energies of both EEG and EMG signals, we found that EEG/

EMG correlations were much weaker than EEG/EEG and

EMG/EMG correlations. In other words, trial-to-trial variations

Properties of Neural Signals during Handwriting

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e43945



of the magnitudes of the EEG and EMG changes were related

only weakly.

Methods

This study was approved by the Institutional Review Board of

Human Participants Research of Dartmouth College, Hanover,

NH. No personal information was recorded during the sessions,

and all data were analyzed anonymously. Written informed

consent was obtained from the subjects prior to the recording

sessions.

A schematic of the experimental setup for simultaneous

recording EMG and EEG signals during handwriting is shown

in Figure 1. We used LogiPen to record handwriting characters.

EMG signals were sampled using bipolar surface EMG electrodes

(Kendall Arbo). We used EMG analog amplifiers with gain 1000,

low pass filter of 450 Hz, and high pass filter of 12 Hz. The EMG

signals were digitized at a sample rate of 1000 Hz. The surface

EMGs of the intrinsic hand muscles were recorded by two

electrode pairs. One pair recorded EMG activity from flexor

pollicis brevis and abductor pollicis brevis. The second pair

recorded from the first dorsal interosseus muscle (Figure 2). EEG

activity was sampled with a standard 64-channel device. The data

from the 64-channel EEG recording system were high-pass filtered

with 8 Hz cutoff, digitized at 1000 Hz and saved on a computer.

Handwriting and EMG inputs were synchronized by a LabView

data acquisition program based on the pen-down event associated

with each handwriting trial. We used LogiManage as the digitizer

of handwriting traces. It recorded X and Y coordinates, as well as

the pen-on-paper signal. EMG signals were recorded on a

dedicated computer that was also connected to the EEG recording

system via a parallel port. The pen-on-paper signals were used to

align EEG and EMG recordings.

To carry out quantitative studies of time-dependent statistical

and correlation properties of neural signals, we instructed seven

subjects to write the digit ‘‘3’’. This task produced consistent motor

patterns with some trial-to-trial variability. The single character

was written about 400 times in 10 blocks of 40 trials. The blocks

were separated by 5 minute rest intervals.

Handwriting trials were defined as the epochs starting 1000 ms

before the time moment when the pen touches the tablet at the

onset of writing a particular character and ending 1000 ms later.

In all cases, the character was completely written before the end of

the trial. After filtering the signals, their amplitudes, Aemg and

Aeeg, containing frequencies from 8 to 450 Hz, were squared to

get the signal ‘‘intensities’’ Iemg~A2
emg and Ieeg~A2

eeg.

To study time-dependent statistical and correlation properties of

the signals, 2000-ms trials were subdivided into 20 time intervals,

each with a duration of 100 ms, and the signal ‘‘energy’’ was

calculated for each of 20 intervals as the sum,

Eemg(n,a,j)~
X

interval

Iemg(n,a,j), ð6aÞ

Eeeg(n,a,j)~
X

interval

Ieeg(n,a,j), ð6bÞ

where n~1720, a~172 for EMG signals and a~1764 for

EEG signals, and j~17N (where N is the total number of trials),

enumerate the time intervals, recording channels, and trials,

respectively.

The minimal length of the time intervals was dictated by the

accuracy with which trials could be aligned with respect to each

other. In our experiments, the accuracy of alignment did not

exceeded a few tens of millisecond, which was determined by the

accuracy of the digitizing tablet used to detect the first moment of

time when the pen touches the paper. Therefore, we chose a 100-

ms time interval. This interval substantially exceeds the temporal

resolution of the digitizing tablet and ensures an accurate trial

alignment.

To obtain dimensionless variables for each interval and trial, the

energies Eemg(n,a,j) and Eeeg(n,a,j) were normalized by dividing

by their mean values Eemg(n,a)~SEemg(n,a,j)T and

Eeeg(n,a)~SEeeg(n,a,j)T. Where the symbol S . . . T stands for

averaging over trials,

S . . . T~
1

N

Xj~N

j~1

. . . : ð7Þ

Thus, the EMG and EEG signals for each recording channel a
and each trial j were characterized by dimensionless energies

Eemg(n,a,j)~
Eemg(n,a,j)

Eemg(n,a)
, ð8aÞ

Eeeg(n,a,j)~
Eemg(n,a,j)

Eeeg(n,a)
, ð8bÞ

Figure 1. Block diagram of the experimental setup.
doi:10.1371/journal.pone.0043945.g001

Figure 2. Placement of EMG sensors on the hand.
doi:10.1371/journal.pone.0043945.g002

Properties of Neural Signals during Handwriting
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and their time dependence was described by the discrete variable n
(time interval number).

Results

1. Statistics of EMG signals
We previously studied the statistical properties of EMG signals

during handwriting [13]. The results of this previous study are

summarized in this Section for the convenience of readers and for

further comparison with the properties of the EEG signals.

Correlations properties of EMG signals, which have not studied

earlier, are discussed in the next Section.

1.1. Mean values and variation coefficients. Trial-aver-

aged intensities of raw EMG signals, or EMG templates,

I (temp)
emg ~SIemgT described the characteristic pattern of EMG

activity for the handwritten character for each of two muscle

groups (Figure 3a). The time dependency of the mean energies
�EEemg(n,a) is shown in Figure 3b. The first 9 time intervals

represent the epoch preceding the first pen touch. This subject

wrote the digit ‘‘3’’ with a mean duration of the pen-on-paper

period (i.e., time during which the pen touched the paper) of about

600–700 ms, which corresponds to time intervals 10 through 15 or

16, while the intervals 17 through 20 correspond to the time

period following the pen liftoff from the paper.

The variation coefficients, Vemg(n,a), which characterize the

dispersion of the data distribution, were computed as the ratio of

the standard deviation

Semg(n,a)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(Eemg(n,a,j){�EEemg(n,a))2T

q
ð9aÞ

to the mean energy,

Vemg(n,a)~
Semg(n,a)

Eemg(n,a)
ð9bÞ

The variation coefficients were large for all time intervals and for

both EMG channels (Figure 3c) and ranged from about 0.3 to 1.

Thus, there was a substantial dispersion of EMG signals from trial

to trial, and the EMG activity during handwriting could not be

adequately described in terms of mean values only. More detailed

analysis of the statistical properties of the EMG signals was

required.

It should be noted that while the mean energies increased

during the pen-on-paper period, the dispersion decreased. EMG

patterns were more consistent when the subject wrote characters

than when he/she lifted the pen off the paper. This pattern of the

mean-energy and dispersion was observed for all subject,

characters, and muscles.

1.2. Distribution functions. We recorded a sufficiently

large number of trials to approximate the theoretical probability

distribution from our data. In Figure 4, the probability plots for

experimental data (with no trial selection) are shown together with

probability plots for the theoretical normal and log-normal

distributions. It is clear that the experimental data are fitted well

with the log-normal probability density function

p(e)~
1ffiffiffiffiffiffi

2p
p

se
exp {

(log e{m)2

2s2

" #
, ð10Þ

where log stands for natural logarithm.

Moreover, it is clear from Figure 4 that the fitted curves for

log-normal and normal distributions are easily distinguished, and

that the log-normal distribution fits the data much better than the

normal one.

2. Correlation functions of EMG signals
We observed that activation patterns of different muscles were

coordinated during handwriting and the EMG bursts occurred at

consistent interburst intervals. Mathematically, this relationship

can be described by statistical correlation functions as described in

the Introduction.

Since the logarithms of the random dimensionless energies (8a),

e(n,a,j)~log½Eemg(n,a,j)�, ð11Þ

are normally distributed across trials for each time interval, we

may assume that the joint probability density function

P½e(n,a,j),e(m,b,j)� for pairs of the logarithms of dimensionless

energies is the joint (second order) normal probability density

function [2].

Figure 3. Statistical properties of EMG signals. (a) Average EMG
intensities (EMG templates) calculated from 394 trials during which a
subject wrote digit ‘‘3’’. The point 1000 ms on the time axis corresponds
to the initial moment of time when the pen touches the paper. (b) The
mean energies of the EMG signals for 100 ms time intervals. The time
interval 10 corresponds to the first 100 ms after the pen touched the
paper. (c) The variation coefficients of EMG energy in each time interval.
doi:10.1371/journal.pone.0043945.g003

Properties of Neural Signals during Handwriting
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This allows one to compute both the correlation functions

C(n,m,a,b)~
1

Semg(n,a)Semg(m,b)

|S½e(n,a,j){�ee(n,a)�½e(m,b,j){�ee(m,b)�T,

ð12Þ

where �ee(n,a)~Se(n,a,j)T, and, using the Fisher transform [11], to

estimate the confidence intervals for the correlations. The Pearson

correlations functions, defined in Eq. (12), are normalized to the

standard deviations; therefore, their moduli do not exceed 1. We

have described those correlation coefficients that approached 1

and were statistically significant as ‘‘strong’’ and those that

approached 0 as ‘‘weak’’ correlations.

Figure 5 shows the cross-correlation function

C(n,m,a~1,b~2) for two groups of muscles (EMG channels 1

and 2) involved in handwriting as a function of two times

(Figure 5a) and the diagonal elements of this function at

coincident time intervals n~m (Figure 5b). It is easy to see

strong and long-time correlations between activities of muscle

groups (Figure 5a) and particularly strong correlations at

coincident time intervals. Correlations were higher outside the

pen-on-paper period, when the subjects held the pen in the air,

and decreased shortly before and during the pen-on-paper period.

Finally, autocorrelation functions, C(n,m,a~1,b~1) and

C(n,m,a~2,b~2) for both EMG signals are shown in Figure 6.

Here again, strong correlations are clear over long time for each

muscle group.

3. Statistical properties of EEG signals
As can be seen from the EMG templates, which indicate distinct

bursts of activity (Figure 3a), and from the time-dependency of

the EMG energy (Figure 3b), muscle activity was clearly

patterned during the handwriting of the character. EEG activity

even in the motor cortex area should not be expected to be limited

to the handwriting itself and can contain other components that

are not necessarily related to handwriting. Therefore, the total

amplitude of EEG signal reads as

Aeeg~A(handwriting)
eeg zA(other)

eeg ð13Þ

and the non-handwriting contribution to the EEG obviously

obscures the handwriting related component.

If a signal with amplitude A(other)
eeg is unrelated to handwriting

trials, averaging over many trials should reduce its contribution to

the mean values and correlation functions. Nevertheless, since we

square the total amplitudes of EEG signals, the contribution of the

non-handwriting activity does not vanish completely.

Figure 4. Probability plots for EMG signals. (a) Plot of empirical
cumulative distribution function (time interval 11; EMG channel 1)
together with theoretical cumulative distribution function plots for
normal and log-normal distributions. The confidence bounds are shown
for the confidence level of 95%. (b) Probability plot for experimental
data for time interval 11, channel 1 together with probability plots for
theoretical normal and log-normal distributions. Axis scales are chosen
to have a straight line for the theoretical probability plot with the log-
normal distribution.
doi:10.1371/journal.pone.0043945.g004

Figure 5. EMG/EMG correlation functions. (a) The cross-correlation
function for EMG channels 1 and 2 (EMG1 and EMG2) as a function of
two times: intervals for EMG1 and intervals for EMG2. (b) The cross-
correlation function for EMG1 and EMG2 for coincident time intervals.
Error bars indicate 95% confidence bounds.
doi:10.1371/journal.pone.0043945.g005

Properties of Neural Signals during Handwriting
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To indicate each EEG channel, we used conventional electrode

names shown in Figure 7.

3.1. Mean values and variation coefficients. In contrast to

EMG signals, we did not find prominent bursts in the EEG

templates I (temp)
eeg ~SIeegT for any of 64-channels that could be

attributed to handwriting activity. Figure 8a represents the time

behavior of the mean energy of EEG signal, �EE(n,a), of channel

C1, which was located over the left hemisphere.

The mean energy and variation of the EEG signal decreased

about 300–400 ms before the pen-on-paper period and remained

low during the actual period of writing. A similar time dependency

of the mean energy was observed for channels FC5, FC3, FC1,

C5, C3, CP5, CP3, and CP1 over the left hemisphere. It should be

noted that during the 300-ms time period preceding the pen-on-

paper period, EMG activity was increased (see Figure 3a and

Figure 3b).

Thus, we found good correspondence between changes in EMG

activity and EEG activity (Figure 8a) over the motor cortex. Even

Figure 6. EMG/EMG correlation functions. (a) EMG1/EMG1
correlation function (i.e., EMG1 auto-correlation function). (b) EMG2
auto-correlation function.
doi:10.1371/journal.pone.0043945.g006

Figure 7. Surface map of EEG electrode locations.
doi:10.1371/journal.pone.0043945.g007

Figure 8. Statistical properties of raw EEG signals. (a) Time
dependence of mean EEG energy on channel C1. (b) Variation
coefficients for EEG energy on channel C1.
doi:10.1371/journal.pone.0043945.g008

Properties of Neural Signals during Handwriting

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e43945



though all subjects involved in our studies were right handed,

similar EEG changes were observed for the midline channels Cz

and CPz, and the channels FC2, FC4, FC6, C2, C4, C6, CP2,

CP4, and CP6 corresponding to the right hemisphere, locations

that were mirror images of the channels with synchronized EMG/

EEG activity over the left hemisphere.

As in the case of EMG signals, we defined the variation

coefficient as a ratio of the standard deviation,

Seeg(n,a)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S½Eeeg(n,a,j){�EEeeg(n,a)�2T

q
ð14aÞ

to the mean energy,

Veeg(n,a)~
Seeg(n,a)

Eeeg(n,a)
ð14bÞ

As in the case of EMG signals, the variation coefficients decreased

shortly before and during the pen-on-paper period. Since the

variation coefficients were quite large (Figure 8b), EEGs during

handwriting could not be adequately described in terms of mean

values only, and more detailed studies of their statistical properties

were required.

The relative magnitude of the EEG energy decrease during the

pen-on-paper period was variable from subject to subject. It was

maximal in the a (8–13 Hz) and, especially, b (13–30 Hz) spectral

ranges and less apparent in the c (30–100 Hz) spectral range

(Figure 9).

It should be emphasized that the variation coefficients in the b
spectral range, where we observed the largest relative decrease in

the mean EEG energies, increased quite significantly (up to two

times) in comparison to other spectral ranges.

3.2. Distribution functions. Figure 10 shows that, as in the

case of EMG signals, the theoretical log-normal function fits our

EEG data better than a normal distribution. The theoretical log-

normal cumulative distribution function lies inside the confidence

bounds computed with the confidence level of 95%. Similar results

were found in all time intervals for the EEG channels

corresponding to the motor cortex in both left and right

hemispheres. Some small deviations observed in some of the time

intervals could be attributed to a contribution of the component of

EEG activity not associated with handwriting activity, A(other)
eeg .

Thus, the log-normal distribution effectively approximated the

trial-to-trial variability of both EMG and EEG energy.

Since the relative magnitude of the EEG energy decrease during

the pen-on-paper period was maximal in the b spectral range, we

restricted our computations of correlation functions for EEG

signals to this spectral range.

4. Correlation functions of EEG signals
Since logarithms of dimensionless energies of EEG signals,

including energies of EEG signals in the b spectral range,

Figure 9. Statistical properties of EEG signals in different
spectral ranges. Time-dependence of mean EEG energy on channel
C1 in alpha (a), beta (b), and gamma (c) spectral ranges.
doi:10.1371/journal.pone.0043945.g009

Figure 10. Probability plots for EEG signals. (a) Plot of empirical
cumulative distribution function for the EEG on channel C3, time
interval 10, together with the theoretical cumulative distribution
function plots for normal and log-normal distributions. The confidence
bounds correspond to a 95% confidence level. (b) Probability plot for
experimental data together with probability plots for theoretical normal
and log-normal distributions. The axis scales are chosen to make the
theoretical probability plot of the log-normal distribution a straight line.
doi:10.1371/journal.pone.0043945.g010
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e(n,a,j)~log½eeeg(n,a,j)�, ð15Þ

were normally distributed, it was appropriate to compute the

Pearson correlation functions as in the case of EMG signals, as

D(n,m,a,b)~
1

Seeg(n,a)Seeg(m,b)

|S½E(n,a,j){�EE(n,a)�½E(m,b,j){�EE(m,b)�T,

ð16Þ

where �EE(n,a)~SE(n,a,j)T.

First, we examined the correlation function at coincident time

intervals, i.e. the diagonal elements D(n,a,b)~D(n~m,a,b). To

study the spatial distribution of the EEG/EEG correlations for the

motor cortex area, it was convenient to average the function D

over the time intervals,

�DD(a,b)~
1

20

Xn~20

n~1

D(n,a,b), ð17Þ

and to study the averaged correlation coefficients �DD(a,b) between

EEG channels. This was possible because the EEG correlation

functions did not vary greatly over time.

While decreases in the energy of EEG signals before and during

the pen-on-paper period were observed (Figure 9a) over the

motor cortex for channels from both the left (FC5, FC3, FC1, C5,

C3, C1, CP5, CP3, and CP1) and right (FC2, FC4, FC6, C2, C4,

C6, CP2, CP4, CP6) hemispheres, we found quite a different

behavior for the correlation coefficients. Correlations were strong

between channels located within the left and right parts of cortex

and much weaker for channels located in opposite hemispheres.

Moreover, correlations between the central channels (Cz and CPz)

and channels on the left and right sides were also weak, despite the

similar decreases in the EEG energy in these channels before and

during the pen-on-paper period.

The left-right symmetry of the cortex activity during handwrit-

ing is seen most clearly from the ‘‘color-coded maps’’ (Figure 11),

where the magnitudes of correlation coefficients are shown by

color.

The statistical method enabled us to easily derive the correlation

coefficients for each time interval to get a dynamical picture of

functional connectivity between different neural regions of the

cortex during handwriting (see Figure 12 and Figure 13).

As seen in Figure 11, Figure 12 and Figure 13, the

correlation magnitudes were not determined only by the spacing

between channels. However, the origin of surface EEG signals is

not truly localized and discrete. There can be a problem of

‘‘volume conduction’’ in which any given EEG signal recorded by

an electrode may contain components created by neural activity in

areas located under other (neighboring) electrodes. To address this

issue, we analyzed the time-dependent correlation functions at

coincident time intervals for three pairs of channels: C5/C1 (both

located on the left hemisphere), C1/C2 (located on different

hemispheres), and C2/C6 (both located on the right hemisphere).

This analysis is presented in Figure 14. Although the inter-

electrode distances in all three pairs were approximately equal to

each other, we observed that inter-hemispheric correlations were

at least 2–5 times lower than intra-hemispheric ones for time

Figure 11. Color-coded maps for the EEG/EEG correlations. (a)
Correlation coefficients between channel C3 and all other EEG channels.
(b) Correlation coefficients between channel C4 and all other EEG
channels.
doi:10.1371/journal.pone.0043945.g011

Figure 12. Changes in EEG/EEG correlations during the trial.
Color-coded plots show correlation coefficients between channel C1
and all other EEG channels for consecutive time intervals.
doi:10.1371/journal.pone.0043945.g012

Figure 13. Changes in EEG/EEG correlations during the trial.
Color-coded plots show correlation coefficients between channel C2
and all other EEG channels for consecutive time intervals.
doi:10.1371/journal.pone.0043945.g013
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intervals before and during handwriting. Thus, volume conduction

appears to have a small impact on the correlations that we

computed based on the ensembles of identical trials.

Moreover, in Figure 15 we present the correlation function

between EEG signals recorded in channels FC5 and CP6. We

observed time-dependent and statistically significant correlations

on the order of 0.2–0.3 despite the maximally large (see Figure 7)

spatial separation between electrodes located in the motor cortex

area with the inter-electrode spacing, L, about of
ffiffiffiffiffiffiffiffi
160
p

cm. The

contribution of the dipole electric field generated by the cortex

located under the electrode FC5 to the electrical potential

recorded by the electrode CP6 was estimated in the simplest

way as (h=L)2*1=160, where h (*1 cm) is the distance between

the electrode and cortex. Thus, the contribution of the electrical

field generated at FC5 to activity at CP6 was very small, and the

correlation between these EEG signals cannot be attributed to the

volume conduction effect.

Finally, we studied the correlation function D(n,m,a,b) depen-

dent on two times, or two sets of time intervals (Figure 16). In

sharp contrast to the case of muscle activity (Figure 7 and

Figure 8), we did not find any long-time correlations between

EEG signals recorded over the motor cortex. The characteristic

correlation time for a single channel was of the order of 100 ms or

less, as seen from Figure 16a, where the correlation function

DC3(n,m)~D(n,m) for channel C3 is plotted.

Figure 14. Time-dependent EEG/EEG correlation functions for
three pairs of channels. Error bars indicate 95% confidence bounds.
(a) Channels C5 and C1 - both located over the left hemisphere. (b)
Channels C1 and C2 - C1 over the left and C2 over the right hemisphere.
(c) Channels C2 and C6 - both located over the right hemisphere.
doi:10.1371/journal.pone.0043945.g014

Figure 15. EEG/EEG correlation function between channels FC5
and CP6 with the maximal inter-channel spacing over the
motor cortex area. Error bars indicate 95% confidence bounds.
doi:10.1371/journal.pone.0043945.g015

Figure 16. EEG/EEG correlation function. (a) Auto-correlation
function for channel C3. (b) Cross-correlation function for channels C3
and C4.
doi:10.1371/journal.pone.0043945.g016
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Moreover, we did not find long-time correlations between

channels lying within the left, right, or central motor cortex sites.

The characteristic correlation time in this case, which correspond-

ed to the characteristic time of cross-talk between channels, was

also on the order of 100 ms or less. More accurate computations of

the characteristic correlation times would require a more precise

trial alignment, which in our experiments was within several tens

of milliseconds.

Finally, we found that correlations between channels that

overlie different parts of motor cortex, e.g., channel C3 (the left

part) and channel C4 (the right part) (Figure 16b), were strongest

at coincident time intervals and quickly became insignificant as the

time interval between recorded events increased. Thus, there were

no significant long-time correlations between channels among

different parts of the motor cortex.

5. Correlation functions of EMG and EEG signals
Since the logarithms of both EMG energy and EEG energy in

motor cortex channels were normally distributed over trials, we

computed the correlation functions between EMG and EEG

signals as

K(n,m,a,b)~
1

Semg(n,a)Seeg(m,b)

|S½e(n,a,j){�ee(n,a)�½E(m,b,j){�EE(m,b)�T
ð18Þ

which detects simultaneous trial-to-trial variations of EEG activity

and EMG activity (Figure 17). As in the case of EEG/EEG

correlation functions, we restricted our computations to the b
spectral range of EEG signals.

The energy of EMG signals grew in the time period shortly

before and during the pen-on-paper period (Figure 3a and 3b),

while the energy of EEG signals in the motor cortex channels

decreased during the same time period (Figure 9b). Therefore,

we expected to find an anticorrelation between EMG and EEG

signals, i.e. the correlation function K would be negative in the

time intervals shortly before and during the pen-on-paper period.

Although correlation coefficients at coincident time intervals,

shown in Figure 18, were statistically significant at some time

intervals, they were smaller than EEG/EEG and EMG/EMG

correlation coefficients. When statistically significant EMG/EEG

correlations occurred, they were inconsistent among subjects.

The absence of strong correlations between EMG and EEG

signals may indicate that strong trial-to-trial variability may be in

part introduced by spinal motoneuron activity, which results in

wide dispersion of EMG signals with respect to EEG signals.

Additionally, EEG components unrelated to motor output may

decrease correlations between EEG and EMG signals.

Discussion

To derive a dynamical picture of neural activity and of

functional relationships between different neural regions, we

examined time-dependent statistical and correlation properties of

EMG and EEG signals recorded simultaneously during handwrit-

ing of digit ‘‘3’’ by 7 subjects. We recorded signals in

approximately 400 2000-ms trials during which each subject

performed an identical handwriting task. The trials started

1000 ms before the moment of time when the pen touched paper

the first time and finished 1000 ms after this moment of time. To

study the time dependence of neural signals, the trials were divided

into 20 100-ms time intervals.

We studied trial-to-trial variability of EMG signals and EEG

signals derived from the motor cortex during the 2000-ms time

interval during which subjects performed the same handwriting

task. We found that the trial-to-trial distribution of the neural

signal energy was described well by a log-normal distribution and

not by a normal distribution. Whereas the distribution parameters

- the mean value and the dispersion - depended on intra-trial time,

the log-normal distribution was found for all of 20 time intervals.

We computed the Pearson auto- and cross-correlation functions

for EMG signals and EEG signals recorded from the motor cortex.

We observed very strong correlations at coincident time intervals

between EMG signals recorded from different muscle groups.

Moreover, these correlations were long-time and remained quite

strong during almost the entire 2000-ms time period.

We also found strong correlations between EEG signals in b
spectral range, provided that channel pairs were located in the

motor cortex of the same hemisphere. The correlations between

signals recorded from different sides of the skull were much

weaker. Moreover, in contrast to the EMG/EMG correlations,

Figure 17. EEG/EMG correlation functions. (a) Correlation function
for EMG channel 1 and EEG channel C3. (b) Correlation function for EMG
channel 2 and EEG channel C4.
doi:10.1371/journal.pone.0043945.g017
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correlations between EEG signals existed only over short durations

that did not exceed 100 ms.

Finally, we found cross-correlation functions between EEG and

EMG signals. We suggest that low correlation coefficients between

EEG and EMG activities may be explained by an abundance of

EEG signals unrelated to low-level motor parameters and by non-

cortical sources of a trial-to-trail variability of spinal motoneuron

activity even though the subjects performed a stereotypical

handwriting task.
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