5,696 research outputs found

    Shifting the Universe: Early Dark Energy and Standard Rulers

    Full text link
    The presence of dark energy at high redshift influences both the cosmic sound horizon and the distance to last scattering of the cosmic microwave background. We demonstrate that through the degeneracy in their ratio, early dark energy can lie hidden in the CMB temperature and polarization spectra, leading to an unrecognized shift in the sound horizon. If the sound horizon is then used as a standard ruler, as in baryon acoustic oscillations, then the derived cosmological parameters can be nontrivially biased. Fitting for the absolute ruler scale (just as supernovae must be fit for the absolute candle magnitude) removes the bias but decreases the leverage of the BAO technique by a factor 2.Comment: 6 pages, 3 figure

    Strong Gravitational Lensing and Dark Energy Complementarity

    Full text link
    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w_0 and time variation w_a. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1% accuracy can improve equation of state characterization by 15-50%. Next generation surveys should provide data on roughly 10^5 lens systems, though systematic errors will remain challenging.Comment: 7 pages, 5 figure

    Using Integrative Approach to Working with Small-Scale farmers

    Get PDF
    The authors present an argument for reshaping rural extension based on their programming and research experiences in Africa and Asia. The book is composed of four major sections: (a) Extension confronts new opportunities and challenges, (b) The fundamentals of agricultural extension, (c) Learning for Sustainability (LforS) — A learning-oriented integrative extension approach, and (d) Developing and managing an integrative learning-oriented extension approach. In the first section, the authors highlight the need to take smallholder farmers into account when addressing Millennium Development goals. This section, further, provides recommendations for extension and advisory services working with smallholder farmers. They make the case for extension and advisory service to use integrative approaches when working with this population. The second section provides a short background on extension and advisory services and concludes that “the more successful… agricultural extension is in adapting its activities and methods to the prevailing economic, social and ecological environment, the greater will be its chances of success” (p. 13). The third section introduces their integrated model, Learning for Sustainability. This model has seven components: stakeholder dialogue, organizational development, knowledge management, awareness raising, capacity building, social mobilisation for implementation, and monitoring and evaluation. The authors use case studies to document how the model has been used. The fourth section focuses on key elements necessary for an extension or advisory service to be effective in addressing its clientele’s needs. The authors’ overall approach to this book was to provide key insights into reshaping rural extension, based on their collective experiences. The book is not a prescriptive formula for bringing about their recommended changes; rather it establishes parameters (approaches, methods, and tools) from which extension and advisory services may consider changes. The authors note that the approach they present is an “idealized example” (p. XI) of what could be

    Quantum transport in noncentrosymmetric superconductors and thermodynamics of ferromagnetic superconductors

    Full text link
    We consider a general Hamiltonian describing coexistence of itinerant ferromagnetism, spin-orbit coupling and mixed spin-singlet/triplet superconducting pairing in the context of mean-field theory. The Hamiltonian is diagonalized and exact eigenvalues are obtained, thus allowing us to write down the coupled gap equations for the different order parameters. Our results may then be applied to any model describing coexistence of any combination of these three phenomena. As a specific application of our results, we consider tunneling between a normal metal and a noncentrosymmetric superconductor with mixed singlet and triplet gaps. The conductance spectrum reveals information about these gaps in addition to how the influence of spin-orbit coupling is manifested. We also consider the coexistence of itinerant ferromagnetism and triplet superconductivity as a model for recently discovered ferromagnetic superconductors. The coupled gap equations are solved self-consistently, and we study the conditions necessary to obtain the coexistent regime of ferromagnetism and superconductivity. Analytical expressions are presented for the order parameters, and we provide an analysis of the free energy to identify the preferred system state. Moreover, we make specific predictions concerning the heat capacity for a ferromagnetic superconductor. In particular, we report a nonuniversal relative jump in the specific heat, depending on the magnetization of the system, at the uppermost superconducting phase transition. [Shortened abstract due to arXiv submission.]Comment: 19 pages, 15 figures (high quality figures available in published version). Accepted for publication in Phys. Rev.

    Quinstant Dark Energy Predictions for Structure Formation

    Full text link
    We explore the predictions of a class of dark energy models, quinstant dark energy, concerning the structure formation in the Universe, both in the linear and non-linear regimes. Quinstant dark energy is considered to be formed by quintessence and a negative cosmological constant. We conclude that these models give good predictions for structure formation in the linear regime, but fail to do so in the non-linear one, for redshifts larger than one.Comment: 9 pages, 14 figures, "Accepted for publication in Astrophysics & Space Science

    The biochemical, physiological, and metabolic evaluation of human subjects in a life support systems evaluator and on a liquid food diet Final report, 12 Jun. 1964 - 23 Feb. 1965

    Get PDF
    Biochemical, physiological, and metabolic analysis of subjects in life support system on liquid food diets during space environment simulatio

    A multi-beam HI survey of the Virgo Cluster - two isolated HI clouds ?

    Full text link
    We have carried out a fully sampled large area (4×84^{\circ} \times 8^{\circ}) 21cm \HI line survey of part of the Virgo cluster using the Jodrell Bank multi-beam instrument. The survey has a sensitivity some 3 times better than the standard HIJASS and HIPASS surveys. We detect 31 galaxies, 27 of which are well known cluster members. The four new detections have been confirmed in the HIPASS data and by follow up Jodrell Bank pointed observations. One object lies behind M86, but the other 3 have no obvious optical counter parts upon inspection of the digital sky survey fields. These 3 objects were mapped at Arecibo with a smaller \am{3}{6} HPBW and a 4 times better sensitivity than the Jodrell Bank data, which allow an improved determination of the dimensions and location of two of the objects, but surprisingly failed to detect the third. The two objects are resolved by the Arecibo beam giving them a size far larger than any optical images in the nearby field. To our mass limit of 5×1075 \times 10^{7} Δv50kms1\frac{\Delta v}{50 km s^{-1}} MM_{\odot} and column density limit of 3×10183 \times 10^{18} Δv50kms1\frac{\Delta v}{50 km s^{-1}} atoms cm2^{-2} these new detections represent only about 2% of the cluster atomic hydrogen mass. Our observations indicate that the \HI mass function of the cluster turns down at the low mass end making it very different to the field galaxy \HI mass function. This is quite different to the Virgo cluster optical luminosity function which is much steeper than that in the general field. Many of the sample galaxies are relatively gas poor compared to \HI selected samples of field galaxies, confirming the 'anaemic spirals' view of Virgo cluster late type galaxies.Comment: Accepted for publication in MNRA

    Crystal structure of the human ATP-dependent splicing and export factor UAP56

    Get PDF
    Pre-mRNA splicing requires the function of a number of RNA-dependent ATPases/helicases, yet no three-dimensional structure of any spliceosomal ATPases/helicases is known. The highly conserved DECD-box protein UAP56/Sub2 is an essential splicing factor that is also important for mRNA export. The expected ATPase/helicase activity appears to be essential for the UAP56/Sub2 functions. Here, we show that purified human UAP56 is an active RNA-dependent ATPase, and we also report the crystal structures of UAP56 alone and in complex with ADP, as well as a DECD to DEAD mutant. The structures reveal a unique spatial arrangement of the two conserved helicase domains, and ADP-binding induces significant conformational changes of key residues in the ATP-binding pocket. Our structural analyses suggest a specific protein-RNA displacement model of UAP56/Sub2. The detailed structural information provides important mechanistic insights into the splicing function of UAP56/Sub2. The structures also will be useful for the analysis of other spliceosomal DExD-box ATPases/helicases

    Testing General Relativity with Current Cosmological Data

    Full text link
    Deviations from general relativity, such as could be responsible for the cosmic acceleration, would influence the growth of large scale structure and the deflection of light by that structure. We clarify the relations between several different model independent approaches to deviations from general relativity appearing in the literature, devising a translation table. We examine current constraints on such deviations, using weak gravitational lensing data of the CFHTLS and COSMOS surveys, cosmic microwave background radiation data of WMAP5, and supernova distance data of Union2. Markov Chain Monte Carlo likelihood analysis of the parameters over various redshift ranges yields consistency with general relativity at the 95% confidence level.Comment: 11 pages; 7 figures; typographical errors corrected; this is the published versio

    Galaxy Selection and Clustering and Lyman alpha Absorber Identification

    Full text link
    The effects of galaxy selection on our ability to constrain the nature of weak Ly\alpha absorbers at low redshift are explored. Current observations indicate the existence of a population of gas-rich, low surface brightness (LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha absorption. Absorption arising in LSB galaxies may be attributed to HSB galaxies at larger impact parameters from quasar lines of sight, so that the observed absorption cross sections of galaxies may seem unreasonably large. Thus it is not possible to rule out scenarios where LSB galaxies make substantial contributions to Ly\alpha absorption using direct observations. Less direct tests, where observational selection effects are taken into account using simulations, should make it possible to determine the nature of Ly\alpha absorbers by observing a sample of ~100 galaxies around quasar lines of sight with well-defined selection criteria. Such tests, which involve comparing simulated and observed plots of the unidentified absorber fractions and absorbing galaxy fractions versus impact parameter, can distinguish between scenarios where absorbers arise in particular galaxies and those where absorbers arise in gas tracing the large scale galaxy distribution. Care must be taken to minimize selection effects even when using these tests. Results from such tests are likely to depend upon the limiting neutral hydrogen column density. While not enough data are currently available to make a strong conclusion about the nature of moderately weak absorbers, evidence is seen that such absorbers arise in gas that is around or between galaxies that are often not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa
    corecore