3,372 research outputs found

    Epidemic Dissemination of Presence Information in Mobile Instant Messaging Systems

    Get PDF
    This paper presents an approach for exchanging presence information between users of an instant messaging system in a mobile ad hoc network. As major feature, presence information is transferred when mobile users get in direct contact, similar to the spread of an infections disease. By exploiting node mobility, presence information is epidemically distributed throughout the network, effectively overcoming network partitions. We show how to apply the Passive Distributed Indexing Protocol, which implements a general-purpose lookup service for mobile applications building upon epidemic data dissemination, for implementing the exchange of presence information. The effectiveness of the approach is illustrated in a simulation study using the network simulator ns-2. Building upon the results, we present the architecture of a mobile instant messaging system that supports the widely adopted Extensible Messaging and Presence Protocol (XMPP), an IETF standardized protocol for instant messaging

    Effective Dissemination of Presence Information in Highly Partitioned Mobile Ad Hoc Networks

    Get PDF
    Presence technology enables users of an instant messaging (IM) system to determine if their contacts are online and ready to communicate. In this paper, we propose an effective approach for the proactive dissemination of frequently changing presence information in highly partitioned mobile, wireless networks with IEEE 802.11 technology. Although communication techniques for intermittently connected networks have been extensively studied in the field of delay tolerant networking, the fact that presence information is highly delay sensitive requires a thorough revision of these techniques. To this end, we use discrete-event simulation based on a high-level stochastic model of the IM system to compare different approaches for disseminating presence information in terms of sustained consistency (i.e., fraction of time presence information is in a coherent state) and traffic requirements. Building upon the outcome of the simulation study, we propose the system for presence information exchange by epidemic dissemination (SPEED). Results of a detailed ns-2 simulation study show that SPEED outperforms an approach based on optimized flooding by up to 20% in terms of sustained consistency for low node density and saves up to 48% of control traffic for medium to high node density

    Exploiting epidemic data dissemination for consistent lookup operations in mobile applications

    Get PDF
    This paper presents a general-purpose distributed lookup service, denoted Passive Distributed Indexing (PDI). PDI stores entries in form of (key, value) pairs in index caches located at mobile devices. Index caches are filled by epidemic dissemination of popular index entries. By exploiting node mobility, PDI can resolve most queries locally without sending messages outside the radio coverage of the inquiring node. For keeping index caches coherent, configurable value timeouts implementing implicit invalidation and lazy invalidation caches implementing explicit invalidation are introduced. Inconsistency in index caches due to weak connectivity or node failure is handled by value timeouts. Lazy invalidation caches reduce the fraction of stale index entries due to modified data at the origin node. Similar to index caches, invalidation caches are filled by epidemic distributions of invalidation messages. We evaluate the performance of PDI for a mobile P2P file sharing a mobile instant messaging application. Simulation results show that with the suitable integration of both invalidation mechanisms, up to 80% of the lookup operations return correct results and more than 90% of results delivered by PDI index caches are up-to-date

    Consistency mechanisms for a distributed lookup service supporting mobile applications

    Get PDF
    This paper presents a general-purpose distributed lookup service, denoted Passive Distributed Indexing (PDI). PDI stores entries in form of (key, value) pairs in index caches located in each mobile device. Index caches are filled by epidemic dissemination of popular index entries. By exploiting node mobility, PDI can resolve most queries locally without sending messages outside the radio coverage of the inquiring node. Thus, PDI reduces network traffic for the resolution of keys to values. For keeping index caches coherent, configurable value timeouts implementing implicit invalidation and lazy invalidation caches implementing explicit invalidation are introduced. Inconsistency in index caches due to weak connectivity or node failure is handled by value timeouts. Lazy invalidation caches reduce the fraction of stale index entries due to modified data at the origin node. Similar to index caches, invalidation caches are filled by epidemic distributions of invalidation messages. Simulation results show that with the suitable integration of both invalidation mechanisms, more than 95% of results delivered by PDI index caches are up-to-date for the considered scenario

    Percolation of Immobile Domains in Supercooled Thin Polymeric Films

    Get PDF
    We present an analysis of heterogeneous dynamics in molecular dynamics simulations of a thin polymeric film, supported by an absorbing structured surface. Near the glass transition "immobile" domains occur throughout the film, yet the probability of their occurrence decreasing with larger distance from the surface. Still, enough immobile domains are located near the free surface to cause them to percolate in the direction perpendicular to surface, at a temperature near the glass transition temperature. This result is in agreement with a recent theoretical model of glass transition

    Assessing Information Waste in Lean Product Development

    Get PDF
    Lean Product Development seeks to enhance the efficiency of product development projects by reducing and eliminating non-value-adding activities or waste, which can exist on every process level. The value stream through product development processes is a flow of information, and hence waste exists in interpersonal communication. The study elaborates the hypothesis that most information transfers do not add value to the product. It was further theorized that different means of communication are better suited for different kinds of information, at least from the lean point of view. In order to understand the occurrence and ramifications of waste in product development information flows, the information transferred between team members was analyzed in two student product development projects. With the help of a paper-based value stream map, frequencies of waste drivers in information, the share of waste in information transfers, the interdependencies of waste and means of communication, as well as timeliness of information transfers were analyzed. The study’s results show that waste is omnipresent in product development information transfers, as only twelve percent of all information transfers contribute value to the product, and nearly half of the information transfers could have been omitted without a decrease in product value. Assuming that preparing, sending, receiving and retrieving information accounts for most of the time spent in product development processes, an enormous theoretical potential for efficiency enhancements could thus be identified

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part II: The intrinsic electronic midgap states

    Full text link
    We propose a structural model that treats in a unified fashion both the atomic motions and electronic excitations in quenched melts of pnictide and chalcogenide semiconductors. In Part I (submitted to J. Chem. Phys.), we argued these quenched melts represent aperiodic ppσpp\sigma-networks that are highly stable and, at the same time, structurally degenerate. These networks are characterized by a continuous range of coordination. Here we present a systematic way to classify these types of coordination in terms of discrete coordination defects in a parent structure defined on a simple cubic lattice. We identify the lowest energy coordination defects with the intrinsic midgap electronic states in semiconductor glasses, which were argued earlier to cause many of the unique optoelectronic anomalies in these materials. In addition, these coordination defects are mobile and correspond to the transition state configurations during the activated transport above the glass transition. The presence of the coordination defects may account for the puzzling discrepancy between the kinetic and thermodynamic fragility in chalcogenides. Finally, the proposed model recovers as limiting cases several popular types of bonding patterns proposed earlier, including: valence-alternation pairs, hypervalent configurations, and homopolar bonds in heteropolar compounds.Comment: 17 pages, 15 figures, revised version, final version to appear in J. Chem. Phy

    Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis

    Get PDF
    Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e. the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way

    Relating Query Popularity and File Replication in the Gnutella Peer-to-Peer Network

    Get PDF
    In this paper, we characterize the user behavior in a peer-to-peer (P2P) file sharing network. Our characterization is based on the results of an extensive passive measurement study of the messages exchanged in the Gnutella P2P file sharing system. Using the data recorded during this measurement study, we analyze which queries a user issues and which files a user shares. The investigation of users queries leads to the characterization of query popularity. Furthermore, the analysis of the files shared by the users leads to a characterization of file replication. As major contribution, we relate query popularity and file replication by an analytical formula characterizing the matching of files to queries. The analytical formula defines a matching probability for each pair of query and file, which depends on the rank of the query with respect query popularity, but is independent of the rank of the file with respect to file replication. We validate this model by conducting a detailed simulation study of a Gnutella-style overlay network and comparing simulation results to the results obtained from the measurement

    Density functional theory of vortex lattice melting in layered superconductors: a mean-field--substrate approach

    Full text link
    We study the melting of the pancake vortex lattice in a layered superconductor in the limit of vanishing Josephson coupling. Our approach combines the methodology of a recently proposed mean-field substrate model for such systems with the classical density functional theory of freezing. We derive a free-energy functional in terms of a scalar order-parameter profile and use it to derive a simple formula describing the temperature dependence of the melting field. Our theoretical predictions are in good agreement with simulation data. The theoretical framework proposed is thermodynamically consistent and thus capable of describing the negative magnetization jump obtained in experiments. Such consistency is demonstrated by showing the equivalence of our expression for the density discontinuity at the transition with the corresponding Clausius-Clapeyron relation.Comment: 11 pages, 4 figure
    corecore