
Exploiting Epidemic Data Dissemination for Consistent Lookup Operations
in Mobile Applications*

Christoph Lindemann and Oliver P. Waldhorst
http://mobicom.cs.uni-dortmund.de

Department of Computer Science, University of Dortmund, 44227 Dortmund, Germany

This paper presents a general-purpose distributed lookup service, denoted Passive Distributed
Indexing (PDI). PDI stores entries in form of (key, value) pairs in index caches located at mobile
devices. Index caches are filled by epidemic dissemination of popular index entries. By exploiting
node mobility, PDI can resolve most queries locally without sending messages outside the radio
coverage of the inquiring node. For keeping index caches coherent, configurable value timeouts
implementing implicit invalidation and lazy invalidation caches implementing explicit invalidation
are introduced. Inconsistency in index caches due to weak connectivity or node failure is handled by
value timeouts. Lazy invalidation caches reduce the fraction of stale index entries due to modified
data at the origin node. Similar to index caches, invalidation caches are filled by epidemic
distributions of invalidation messages. We evaluate the performance of PDI for a mobile P2P file
sharing a mobile instant messaging application. Simulation results show that with the suitable
integration of both invalidation mechanisms, up to 80% of the lookup operations return correct
results and more than 90% of results delivered by PDI index caches are up-to-date.

I. Introduction

Many distributed applications require global resolution
of application-specific keys to application-specific
values, a functionality provided by a lookup service.
Perhaps the most prominent lookup service is the
Domain Name System (DNS, [11]), which resolves
each host name to the corresponding IP address.
Similarly, instant messaging systems require a one-to-
one mapping of a user ID to the current user’s terminal
or presence state. Further examples of lookup services
include Internet search engines and distributed
information retrieval systems, which provide for each
query consisting of keywords a one-to-many mapping
to matching documents. Recent research efforts in peer-
to-peer technology [14], [15] aim at building Internet-
scale distributed hash tables, which provide a general-
purpose approach for mapping keys to values.

In mobile and wireless environments, weak
connectivity or even disconnected operation hampers
the employment of a centralized lookup service. The
smart collaboration of mobile devices in an ad hoc
fashion constitutes an attractive alternative for
implementing an effective distributed lookup service
for such scenarios. Suitable methods for implementing
such collaboration constitute epidemic algorithms. Such
algorithms transmit information when nodes get in
direct contact, similar to the transmission of an
infectious disease between individuals. Mathematical
models for the spread of epidemic diseases have been

* This paper is an extended version of the paper “Consistency
Mechanisms for a Distributed Lookup Service supporting
Mobile Applications” that appeared in the 3rd Int. ACM
Workshop on Data Engineering for Wireless and Mobile
Access (MobiDE 2003).

widely studied. There exist applications of epidemic
algorithms in various fields of computer science, e.g.,
for the maintenance of replicated databases [2].
Papadopouli and Schulzrinne introduced seven degrees
of separation (7DS), a system for mobile Internet access
based on web document dissemination between mobile
users [12], [13]. To locate a web document, a 7DS node
broadcasts a query message to all mobile nodes
currently located inside its radio coverage. Recipients
of the query send response messages that contain file
descriptors of matching web documents stored in their
local file caches. Subsequently, such documents can be
downloaded with HTTP by the inquiring mobile node.
Web documents may be distributed to other nodes that
move into radio coverage, implementing an epidemic
spread of information.

Using a related approach, Goel, Singh, Xu and Li
proposed broadcasting segments of shared files using
redundant tornado encoding [4]. Their approach enables
nodes to restore a file, if a sufficient number of
different segments have been received from one or
more sources. Khelil, Becker, Tian, and Rothermel
presented an epidemic model for a simple information
diffusion algorithm [8] inspired by the SPIN-1 protocol
[5]. Both systems implement a push model for
information dissemination. That is, shared data is
advertised or even actively broadcasted without a node
requesting it. Recently, Hanna, Levine, and Mamatha
proposed a fault-tolerant distributed information
retrieval system for peer-to-peer document sharing in
mobile ad hoc environments [6]. Their approach
distributes the index of a new document to a random set
of nodes when the document is added to the system.
The complete index of a document, i.e., all keywords

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

matching it, constitutes the smallest unit of
disseminated information.

In this paper, we introduce a general-purpose
distributed lookup service, denoted Passive Distributed
Indexing (PDI). Building upon [9], PDI stores index
entries in form of (key, value) pairs in index caches
located at each mobile device. Index caches are filled
by epidemic dissemination of popular index entries. By
exploiting node mobility, PDI can resolve most queries
locally without sending messages outside the radio
coverage of the inquiring node. Thus, PDI effectively
reduces network traffic for the resolution of keys to
values for applications possessing a sufficiently high
degree of temporal locality in their query streams as
known for web content, Internet search engines and
P2P file sharing systems [16], [18]. Beyond [9], we
generalize the semantics of key-to-value matching
beyond the simple matching of keywords to document-
sources. Subsequently, PDI supports arbitrary
application-specific keys to be matched to application-
specific values. For keeping index caches coherent, we
introduce two novel consistency mechanisms for PDI
index caches: (1) configurable value timeouts
implementing implicit invalidation and (2) lazy
invalidation caches implementing explicit invalidation.
Inconsistencies in index caches due to weak
connectivity or node failure are handled by value
timeouts. Lazy invalidation caches reduce the fraction
of stale index entries due to modified data at the origin
node. Similar to the epidemic distribution of index
entries, invalidation caches are filled by epidemic
distributions of invalidation messages.

As for PDI, a sufficiently high degree of locality in user
queries is essential for all related approaches [4], [6],
[8], [12], [13]. Opposed to 7DS [12], [13], PDI
implements document search based on a distributed
index rather than immediate document sharing. In fact,
PDI disseminates individual index entries where as 7DS
disseminates complete documents. Opposed to [4] and
[8], PDI implements a pull model and does not
advertise data yielding a substantial reduction of traffic
over wireless links. In contrast to [6], PDI disseminates
just a single key and one or more matching values
rather than the complete index of a document.
Furthermore, opposed to all related work, PDI provides
effective means for coping with stale index entries due
to weak connectivity, node failure, and modified data.
Moreover, opposed to all related work, PDI cannot only
be employed for P2P file sharing, but also for numerous
other mobile applications like mobile instant messaging
or a mobile information portal.

In a comprehensive simulation study using ns-2, [3], we
investigate the performance of PDI for two selected
mobile applications. As workload model for the

simulation studies, we present a general analytical
framework to capture the workload generated by
mobile applications. We customize the framework for a
mobile peer-to-peer (P2P) file sharing application and a
mobile instant messaging (IM) application, and apply
the customized framework subsequently for workload
generation in the simulation studies. The presented
performance curves show that for both applications the
presented invalidation messages reduce stale hits by up
to 80%. As a consequence, PDI resolves up to 80% of
the requests for key-to-value resolutions correctly.
Furthermore, the number of stale values returned on a
request is below 10%.

The remainder of this paper is organized as follows.
Section II summarizes the basic concepts of PDI.
Section III introduces the two novel consistency
mechanisms for PDI, value timeouts and lazy
invalidation caches. In Section IV, an analytical
framework for characterizing mobile applications is
derived and customized for a mobile P2P file sharing
and a mobile IM application. Based on the customized
framework, performance results for PDI and each of the
applications are presented in Section V. Finally,
concluding remarks are given.

II. Basic Concepts of PDI

We assume a system consisting of several mobile
nodes, e.g., mobile users equipped with notebooks or
PDAs and wireless network interfaces as illustrated in
Figure 1. All mobile nodes collaborate via a shared
application that uses a distributed lookup service. Radio
coverage is small compared to the area covered by all
nodes, so that most nodes cannot contact each other
directly. Thus, communication may be performed using
several intermediate hops as in mobile ad hoc networks
(MANET, [10]). Subsequently, we assume IEEE
802.11x as underlying radio technology [7]. However,
we would like to point out that PDI could be employed
on any radio technology that enables broadcast
transmissions inside a node’s radio coverage.

PDI implements a general-purpose lookup service for
mobile applications. In general, PDI stores index entries
in the form of pairs (k,v). Keys k and values v are both
defined by the mobile application. In case of file
sharing, keys are given by keywords derived from the
file name or associated meta-data. Values are given by
references to files in form of URIs. Opposed to
distributed hash-table systems [14], [15], that require a
one-to-one matching of keys and values, PDI does
neither limit the number of keys matching a value nor
the number of values matched by a key. Thus, PDI can
implement more sophisticated query semantics, e.g.,
logical AND and OR concatenations of keys. However,

(a) The mobile phone broadcasts a query for key k, which matches
value v based in the local index of the notebook.

(k1,v1)

...

...

...

...

...

...

...

(k,v)...

...

...

...

Query(k)Query(k)

(b) The notebook broadcasts a response for (k,v). All devices inside
the radio coverage receive it and store (k,v) in their index caches.

...

...

...

...

(k,v)

...

(k,v)

...

(k,v)

...

(k,v)

Response(k,v)Response(k,v)

(k,v)

(c) After changing its position, the second mobile phone receives a

query for key k broadcasted by the PDA.

...

...

...

(k,v)...

(k,v)

...

(k,v)

...

(k,v)

...

(k,v)

Query(k)Query(k)

(d) The second mobile phone generates a response for (k,v) from the
index cache on behalf of the notebook.

...

...

(k,v)

(k,v)...

(k,v)

...

(k,v)

...

(k,v)

...

(k,v)

Response(k,v)Response(k,v)

Figure 1. Illustration of epidemic information dissemination with PDI

some mechanisms introduced in Section III require that
a value is unique in the system, i.e., it is only added to
the system by a single node. This can be easily
achieved by extending the application specific value v
by a unique node identifier in for node n. For example,
the node identifier in may be derived from the node’s IP
address or the MAC address of the radio interface. For
ease of exposition, we will abbreviate the unique value
given by (v, in) pairs just by v.

A node n may contribute index entries of the form (k,v)
to the system by inserting them in a local index. In
Figure 1, the local index is drawn as the first box below
each mobile device. We refer to an index entry in the
local index as supplied. The node n is called the origin
node of the index entry. For example, the notebook
shown in Figure 1 is the origin node of the index entry
(k,v). A key k matches a value v, if (k,v) is currently
supplied to the PDI system. Each node in the system
may issue queries in order to resolve a key k to all
matching values vi (see Figure 1a). We refer to a node
issuing a query as the inquiring node. We restrict
ourselves to a query semantic given by conjunctions of
keys, i.e., implementing Boolean AND. That is, for a
query comprising of more than one key, a value
matches the query, if it matches all keys. Note that the
query semantic can be easily extended to additionally
support disjunctions of keys, i.e., implementing
Boolean OR, by including a bit vector indicating the
matched keys for each value in the response message.

Query messages are sent to the IP limited broadcast
address 255.255.255.255 and a well-defined port. Thus,
all nodes located inside the radio coverage of the
inquiring node receive a query message. These nodes
may generate a response message. A response message
contains the query and all matching values from either
the local index or a second data structure called index
cache. To enable epidemic data dissemination, PDI
response messages are sent to the IP limited broadcast
address 255.255.255.255 and a well-defined port, too.

Thus, all mobile nodes within the radio coverage of the
responding node will overhear the message (Figure 1b).
Not only the inquiring node but also all other mobile
nodes that receive a response message extract all index
entries and store them in the index cache (see Figure
1b). In Figure 1, index caches are drawn as the second
box below mobile devices. Index entries from the index
cache are used to locally resolve queries, if the origin
nodes of matching values reside outside the radio
coverage of the inquiring node (see Figures 1c and 1d).
Obviously, the index cache size is limited to a
maximum number of entries adjusted to the capabilities
of the mobile device. The replacement policy least-
recently-used (LRU) is employed when newly received
index entry will see a full cache. Note that information
is disseminated to all other nodes that are in direct
contact, similar to the spread of an infectious disease.
Due to the movement of nodes and overhearing
response messages of neighboring nodes, index entries
are disseminated within the network without costly
global communication. In fact, PDI builds and
maintains an index distributed among mobile node of
the MANET in a passive way.

Recall that responses derived from the index caches
only contain index entries from remote hosts. Such
responses may be out of date when the origin node
either has left the system or has withdrawn the index
entry from its local index. Thus, effective consistency
mechanisms as introduced in Section III are the key for
the effective design of PDI.

To extend information dissemination beyond the radio
coverage of inquiring nodes, PDI includes a message
forwarding mechanism. Queries may be relayed a
certain number of hops specified by the inquiring node
in a time-to-live field (TTLquery). Similarly, response
messages may be forwarded TTLquery hops. Before
forwarding a response message, a mobile node removes
all values found in the index cache from the message.

For a detailed description of this concept, denoted as
selective forwarding, we refer to [9].

Note that beside inconsistent results, PDI might even
return no results to a query for key k at all. This may
occur, if the corresponding query neither reaches the
origin node nor any other node storing an index entry
for value v in its index cache. We refer to such
unresolved query as false misses. For the application
running on top of PDI, there are two ways to resolve
false misses: First, the application can tolerate false
misses and simply ignore them. Second, the application
has to resort to a centralized lookup service via the
cellular infrastructure of a mobile network as fallback.
Since query streams for P2P file sharing and Internet
search engines possess a high degree of temporal
locality [16], [18], PDI will produce only few false
misses for such applications.

III. Means for Maintaining Index Consistency

III.A. Consistency Issues for Mobile Systems

As mentioned above, caching index entries may
introduce inconsistency. For instance, when a node
stops supplying an index entry (i.e., the pair (k,v) is
removed from the local index of the node), copies of
the index entry will remain in the index caches of other
nodes. We refer to an index entry contained in a
response message as fresh or up-to-date, if it is
currently stored in the local index of the origin node.
Otherwise, the index entry is denoted as stale. Stale
index entries obviously yield stale search results and
even disseminate in the system. As shown in Section
V.B, hits for stale index entries constitute a significant
fraction of all results received in response to a query
when no invalidation mechanism is used. In this
section, we discuss invalidation mechanisms that can
cope with both weak connectivity and modification of
information. Since PDI has to deal with both sources of
inconsistency, PDI implements an integrated approach
that combines both invalidation mechanisms.

Timeouts constitute a common concept in several areas
of distributed applications, as they can assure cache
consistency without the need to contact the source of
the cached information. Examples include the
invalidation of cached DNS records in the domain
name system or the invalidation of cached Web
documents in WWW caches. To achieve both
maximum consistency and a sufficient number cache
hits, it is crucial for a timeout-based invalidation
mechanism that the timeout durations are chosen
appropriately. In DNS, the origin DNS server specifies
the timeout duration for each entry. In web caching, the
adaptive TTL algorithm calculates the timeout duration
from the last modification time of a document at the
origin server. Note that both approaches rely on

information directly received from the origin server. In
contrast, due to the epidemic dissemination, most index
cache entries are extracted from responses comprising
of entries of other index caches, i.e., without direct
contact to the origin node. Thus, PDI defines the
concept of value timeouts to approximate the most
recent information about the state of an index entry at
the origin node.

Examples of explicit invalidation schemes include the
invalidation of cached memory blocks in distributed
shared memory (DSM) systems, or the invalidation of
documents in web caches. To achieve consistency, the
origin node of an item sends invalidation messages to
exactly those nodes that are caching this item. In DSM
systems, the origin node of a shared page sends
invalidation messages to all nodes sharing this page. In
web caching systems, the origin server of a web
document sends invalidation messages to each web
cache that holds a copy of the document. Note that both
mechanisms require that the origin node knows where
all copies of an item reside and that all sharers are
reachable. In contrast, in a mobile environment
consisting of nodes with limited resources, connectivity
of nodes cannot be guaranteed nor directories for all
cached copies of a shared item can be maintained. To
address these constraints in mobile systems, PDI
defines the concept of lazy invalidation caches
implementing explicit invalidation of values.

III.B. Configurable Value Timeouts for
Dealing with Weak Connectivity and Node Failures

The basic concepts of PDI as described in Section II do
not take into account low connectivity and spontaneous
departures of nodes; circumstances under which all
information previously supplied become stale.
Examples of these cases include node failure or nodes
leaving the area covered by the system.

Value timeouts limit the time for which any index entry
(k,v) of a given value v will be stored in an index cache.
By receiving a response from the origin node of (k,v),
the corresponding value timeout will be reset. Let a(k,v)
be the time elapsed since (k,v) has been extracted from
a response message generated by its origin node. We
define the age av of value v as ()(),minv k k va a= , i.e.,
the time elapsed since the most recent response
message of this kind was received. When at a node
holds va T> for the given timeout value T, all pairs
(k,v) are removed from its index cache. PDI implements
only one timeout per value v rather than an individual
timeout for each index entry (k,v). This is because in
most applications the fact that one index entry (k,v) for
a given v expires indicates a substantial change of the
value. Subsequently, all other index entries (k’,v) are
likely to be influenced. For example, in a file sharing

system, a pair (keyword_i, URI) is removed when the
file specified by URI is withdrawn from the system.
Thus, all other pairs (keyword_j, URI) also become
stale. Note that depending on the application the
concept of value timeouts can be easily extended to
individual timeout durations Tv for each value v. Such
duration may be included in a response message
generated by the origin node. For ease of exposition, we
assume in the remainder of this paper a global timeout
value T for all values in the system.

To determine the current age of a value, an age field is
included in the response message for each value. This
age field is set to zero in each response from the origin
node. When receiving a response message, a node n
extracts the age of each value and calculates the supply
time sv. That is the time at which a response for this
value was generated by the origin node. Assume that
the response message contains age av, then sv is
determined by v n vs c a= − , where cn denotes the local
time of node n. sv is stored in the index cache together
with v. Note that v might already be present in the index
cache with supply time s’v. The copy the index cache
might result from a more recent response by the origin
node, i.e., v vs s′< . Thus, in order to relate the age of a
value to the most current response from the origin node,
the supply time is updated only if v vs s′> . When a node
generates a response for a cached index entry (k,v), it
sets the age field for each value v to v n va c s= − . Note
that only time differences are transmitted in PDI
messages, eliminating the need for synchronizing
clocks of all participating nodes.

III.C. Lazy Invalidation Caches for Dealing with
Data Modification at Origin Node

Additional to the scenarios described above, a node
produces stale index entries by modifying information.
That is the case when an index entry is removed from
the local index. In a worst-case scenario, a node
suddenly leaves the system and all index entries
supplied by the node expire at the same time. One way
to handle such modification of information is to wait
until the timeouts of the values in the stale index entries
elapse. Depending on the application and the timeout
value T, this straightforward solution may cause severe
inconsistency, especially if T is large. A more effective
way to handle information modification in distributed
applications constitutes the explicit invalidation by
control messages.

As basic idea of the explicit invalidation mechanism, a
node removes all index entries (k,v) from the index
cache when it receives an invalidation message for
value v. Flooding is a straightforward way to propagate
invalidation messages. To flood an invalidation

message for value v, the node removing an index entry
sends the message to the limited broadcast address. All
mobile nodes that receive the message will relay it
exactly once, so that the message is propagated to each
node that is connected to the initial node via one or
more hops. Unfortunately, in mobile systems even a
multi-hop connection between two nodes frequently
does not exist. Subsequently, stale index entries are still
contained in the index caches of nodes that are not
reached by the invalidation message. Note that these
index entries will be redistributed in the system due to
the epidemic dissemination. We will show in Section
V.C that even repeated flooding of invalidation
messages does not significantly reduce the number of
hits for index entries.

This observation is consistent with [2], which reports
that deleted database items “resurrect” in a replicated
database environment due to epidemic data
dissemination. In [2], a solution is proposed that uses a
special message to testify the deletion of an item,
referred to as death certificate. Death certificates are
actively disseminated along with ordinary data and
deleted after a certain time. In contrast, we propose a
mostly passive (or “lazy”) approach for the epidemic
propagation of invalidation messages, which is
illustrated in Figure 2. For the initial propagation of an
invalidation message by the origin node, we rely on
flooding as described above (Figure 2a). Each node
maintains a data structure called lazy invalidation
cache, which is drawn as a third box below the mobile
devices in Figure 2. When a node receives an
invalidation message for a value v it does not only relay
it, but stores v in the invalidation cache (Figure 2b).
Note that an entry for v is stored in the invalidation
cache, regardless if the node stores any index entry (k,v)
for v in the index cache. Thus, every node will
contribute to the propagation of invalidation messages,
so that distribution of information and invalidation
messages is separated. To enable the epidemic
propagation of the invalidation message, a node scans
the invalidation cache for all values contained in an
overheard response message (Figure 2c). If a value v’ is
found, the node will generate an invalidation message
for v’ itself, because the hit in the invalidation cache
indicates that the index cache of a nearby node contains
a stale entry (Figure 2d). The invalidation message is
not flooded through the complete network, but only
with a certain scope similar to forwarding query and
response messages as described in Section II. A node
that receives a cached invalidation message will store
the included value v in the invalidation cache, and
remove all index entries (k,v) from the index cache.

� (a) The notebook withdraws (k,v) from the local index and
broadcasts an invalidation message for value v.

(k,v)

...

(k,v)

...

(k,v)

...

...

(k,v)

...

(k,v)

... ...

...

...

...

...

...

...

Invalidate(v)

� (b) The mobile phone relays the invalidation message
and stores value v in the lazy invalidation cache.

(k1,v1)

...

(k1,v1)

...

(k1,v1)

...

...

(k,v)

...

(k,v)

... ...

...

...

...

...

...

...

Invalidate(v)

v

...

� (c) After changing its position, the mobile phone receives a

response for the stale value v broadcasted by the PDA.

(k1,v1)

...

(k1,v1)

...

(k1,v1)

...

...

(k,v)

...

(k,v)

... ...

...

...

v

...

...

v

Response(k,v)

...

� (d) The mobile phone sends an invalidation from the
cache on behalf of the notebook. The PDA invalidates (k,v).

(k1,v1)

...

(k1,v1)

...

(k1,v1)

...

...

(k,v)

...

(k,v)

... v

...

...

v

...

...

v

Invalidate(v)

...

Figure 2. Epidemic dissemination of invalidation messages using lazy invalidation caches

Additionally, the node checks whether it has recently
received hits for v in response to an own query, which
must also be invalidated and may not be passed to the
application using PDI.

As the index cache size, the invalidation cache size is
limited to a fixed number of values and LRU
replacement is employed. In Section V.C, we show that
setting the invalidation cache size to a fraction below
20% of the index cache size achieves sufficient
reduction of false hits assuming a reasonable rate of
data modification. Note that LRU replacement does
neither guarantee that an invalidation cache entry is
kept until all stale index entries are invalidated, nor that
it is removed after a certain time, inhibiting a node
indefinitely from restoring a value it has once
invalidated. Increasing the invalidation cache size
solves the first problem, though, doing so amplifies the
second problem. To avoid this tradeoff, storing the
supply time of invalidation messages similar to the
supply time of values as described by Section III.B
yields an efficient mechanism to decide whether a
result for a value is more recent than an invalidation
message.

IV. Characterization of Mobile Applications

IV.A. Lookup Requirements of Mobile
Applications

In this section, we discuss how we can characterize the
way a mobile application makes use of a lookup service
for simulation purpose. That is, we describe the lookup
requirements of the mobile application. We assume Nm
users participate with mobile devices. The application
defines a set of keys K with cardinality KN=K . We
associate each key with its popularity rank, i.e.,

{ }1, , KN= …K , where key 1 is the most frequently
requested key. Additionally, the application defines a
set of values V with cardinality VN=V . We assume
an arbitrary numbering of values, i.e., { }= 1, , VN…V .
We describe the lookup requirements of the mobile

application by five basic functions denoted as workload
functions:

Query function []: 0,1queryw →K . The function
wquery(k) denotes the probability that a query is for a
given key k.

Selection function []: 0,1selectw × →K V . The function
wselect(k,v) denotes the probability that a key k matches a
value v.

Pause function []: 0,1pausew + → . The function
wpause(t) denotes the probability that a node pauses for
the time t between two successive queries.

Expiration function []: 0,1expirew + → . The function
wexpire(t) denotes the probability that a value expires
after a time t.

Arrival function []: 0,1arrivew + → . The function
warrive(t) denotes the probability for the time between
two consecutive arrivals of nodes is equal to t. Since we
assume that the system is in steady state, the departure
function is equal to the arrival function.

Subsequently, we show how to define workload
functions for characterizing two selected mobile
applications, mobile P2P file sharing and mobile IM.
Note that the customized workload functions are
sufficient for generating synthetic workloads as input
for the simulation studies presented in Section V.

IV.B. Characterization of Mobile P2P File Sharing

The operation of a P2P file sharing systems requires
two basic mechanisms: (1) a keyword-based search
algorithm for files shared by remote peers, and (2) a
mechanism for downloading files from the search
results. PDI can effectively implement the search
algorithm of a mobile P2P file sharing system;
subsequent file downloads may be performed using
standard MANET routing protocols or cellular network
infrastructure. In P2P file sharing, keys are given by
keywords from file name or some meta-data associated

with a file. Values denote a location from which a file
can be downloaded, e.g., given by a URI. Note that this
definition implies a many-to-many matching between
keys and values, i.e., may keys may match a given
value, and a given key may match many values. Using
PDI for mobile P2P file sharing obviously requires
invalidation mechanisms: First, a mobile device may
stop sharing a file, e.g., by deleting it from the local
disk. In this case, the value denoted by this file expires.
Second, a mobile user may depart from the system, e.g.,
due to node failure. In this case, all files shared by the
user are removed from the system, and all
corresponding values expire.

For defining the workload functions for P2P file
sharing, we assume that both K and V are finite in an
observation period of finite length T. Consistent with
[16], [17], assume that the query function 2P P

queryw for a
P2P file sharing system can be approximated by Zipf-
like distributions with parameters α (In a Zipf-like
distribution, for the access probability P(i) to an item
with rank i holds ()P i i α−≅). Furthermore, we assume
that the selection function 2P P

selectw is given by a Zipf-like
distribution with parameter β. Thus, these workload
functions are given by:

 2

K

1()P P
query

j

w k k
j

α
β

−
−

∈

=
∑

 and 2

K

(,)P P
select

j

hw k v k
j

β
α

−
−

∈

=
∑

(1)

Here, h denotes the average number of keys matching a
given value, with

Kj
h j β−

∈
≤ ∑ . For defining the

request function, we assume that the intervals between
two successive queries by a node are exponential
distributed with parameter λ. Thus, the pause function
for P2P file sharing 2P P

pausew is given by:

 2 ()P P t
pausew t e λλ −= (2)

For definition of the expiration function, we assume
that each value expires exactly once in an observation
period of length T. Thus, the expiration function for
P2P file sharing 2P P

expirew is given by:

 2 1()P P
expirew t

T
= (3)

In an observation period of length T, we assume that
dNn nodes depart from the system with 0 1d≤ ≤ .
Subsequently, we assume that the arrival function

2 ()P P
arrivalw t is given by an exponential distribution with

parameter ndN T . Then, the number of arrivals in the
observation period is Poisson distributed with
parameter n ndN T T dN⋅ = and mean dNn. That is the
arrival function for P2P file sharing 2 ()P P

arrivalw t is given
by:

 2 ()
ndN

tP P n T
arrival

dNw t e
T

−
= (4)

Throughout the simulation studies, we use the
parameter setting given by Tables 1 and 2, if not stated
otherwise.

IV.C. Characterization of Mobile Instant
Messaging

A key feature of an IM system is the ability to track the
present state of a user. That is, a user can determine
whether another user is free for chat, busy, away, or
offline. In a wire-line IM system, a dedicated IM server
maintains presence information, and returns presence
state when queried for a user’s unique IM identifier.
Since such centralized component is not available in a
self-organizing mobile network, the IM server must be
replaced by a distributed approach. PDI can be
effectively employed to maintain presence information
in a mobile IM system; additional features of IM
systems such as message-based communication may be
implemented using standard MANET routing protocols
or cellular network infrastructure. In a mobile IM
system based on PDI, each mobile user contributes his
current presence state to the system as only value,
which is matched by a key given by the users IM
identifier. Subsequently, this results in a one-to-one
matching of keys and values. Using PDI in a mobile IM
obviously requires invalidation mechanisms, since a
user occasionally changes his presence state or departs
from the system. That is, the value contributed by the
user expires and is replaced by a new value.

For definition of the workload functions for a mobile
IM application, we define { }1, , mN= …K , i.e., the
user’s IM identifiers provide the keys. Furthermore,
define (){ },u s=V with 1 mu N≤ ≤ and {1,2, }s ∈ … .
When user u that changes his current presence state, he
sends an invalidation messages for (u,s) and
subsequently contributes (u,s+1) to the system. We
assume that each mobile user maintains a buddy list,
i.e., a list of his favorite contacts. Each user u is on the
contact list of each other user with probability Cu-1,
where C is a constant. I.e., the social contacts are
described by a Zipf distribution. An IM client
periodically polls the presence state of each contact on
a users contact list and displays whether the user is
busy, free for chat, etc. Based on this model, some
calculus shows that the query function IM

queryw is given by
a Zipf distribution:

 1()
query

IMw k Ck −= (5)

Given that each contact is polled once within a period
Tp, the pause function IM

pausew can be calculated using the

probability mass function l(n)=P{length of buddy list is
n}:

() ,

()
0 else

pIM
pause

l n t T n n
w t

= ∈
=

 (6)

For the expiration function, we assume that users
change presence state in exponentially distributed
intervals with parameter γ. Thus, the expiration
function exp

IM
irew for mobile IM is given by:

 exp ()IM t
irew n e γγ −= (7)

Furthermore, for the arrival function we assume
exponentially distributed arrivals similar to the P2P file
sharing application. Thus, the arrival function IM

arivalw is
given by:

 ()
nd N

tIM n T
arrive

d Nw t e
T

⋅
−⋅

= (8)

V. Performance Studies

V.A. Simulation Environment

To evaluate the performance of PDI, we conduct
simulation experiments using the network simulator ns-
2 [3]. We developed an ns-2 application implementing
the basic concepts of PDI as described in Section II as
well as the two consistency mechanisms described in
Section III. An instance of the PDI application is
attached to each simulated mobile device, using the
UDP/IP protocol stack and a MAC layer according to
the IEEE 802.11 standard for wireless communication
[7]. All MAC layer parameters were configured to
provide a radio-coverage with a radius of 115m. We
assume that the Nm mobile nodes move in an area of
1000 m × 1000 m according to the random waypoint
mobility model [1]. Maximum node speed is 1.5 m/s
and a pause time between two movement epochs is 50
s. The random waypoint model with this configuration
is commonly used to mimic the movement of
pedestrians.

Table 1: Common parameters for both applications
Para-
meter

Description Mobile P2P
File Sharing

Mobile
Instant

Messaging
N m Number of mobile nodes 100 100
N K Number of keys 10.000 N m

N V Number of values 16 ⋅ N n N m

T Simulation time 7200 s 7200 s
Table 2: Application-specific parameters

Parameter Value Parameter Value
α P2P 0,9 T P 0,05
β P2P 1,2 γ IM 0,9

h 3 D 0.3
D 0.3

λ P2P 1/120

Mobile P2P File
Sharing

Mobile Instant
Messaging

For both applications, we considered four different
sizes for PDI index caches, i.e., 32, 128, 512 and 2048
entries for mobile P2P file sharing and 16, 32, 64, and
128 entries for mobile IM. In all experiments, we set
the TTL for selective forwarding TTLquery = 4 hops, and
for forwarding of invalidation messages TTLinv = 2
hops. A synthetic workload for each mobile application
was generated using the customized analytical
framework presented in Section IV.

We choose performance measures to evaluate the
accuracy and the coherence of the results delivered by
PDI and the impact of the introduced invalidation
mechanisms. Accuracy is measured by the hit rate HR,
i.e., F FHR H K= for HF denoting the number of up-
to-date hits and KF the total number of all up-to-date
matching values currently in the system. Note that hit
rate can be compared to the information retrieval
measure recall. Coherence is measured by the stale hit
rate SHR, i.e., ()s s FSHR H H H= + , where HS
denotes the number of stale hits returned on a query.
Note that stale hit rate is related to the information
retrieval measure precision by 1precision SHR= − . As
last measure, reduction of stale hits is measured by the
coherence efficiency EF, i.e., ()ˆ1 s sEF H H= − ,
where ˆ

sH denotes the number of hits for stale index
entries without employing an invalidation mechanism.

We conduct transient simulations starting with initially
empty caches. For each run, the total simulation time
was 2 hours. To avoid inaccuracy due to initial warm-
up, we reset all statistic counters after a warm-up period
of 10 minutes simulation time. For each point in all
performance curves, we performed 100 independent
simulation runs and calculated corresponding
performance measures at the end of the simulation. In
all curves 99% confidence intervals determined by
independent replicates are included.

V.B. Performance of PDI in a Mobile P2P File
Sharing Application

V.B.1. Performance of PDI without Invalidations

In a first experiment, we investigate the coherence of
index caches maintained by PDI without the
invalidation mechanisms presented in Section III. These
performance curves are shown in Figures 3 and 4.
Figure 3 plots hit rates as a function of system size for
different sizes of the index cache. The results reveal
that hit rate increases with growing system size because
an increasing number of nodes increase the
dissemination of information. Furthermore, the increase
slows down with increasing number of nodes because
the total number of values in the overall system
increases. In these cases, the hit rate is clearly limited
by the overall index cache size. Note that increasing the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

H
it

 R
at

e

Number of Nodes

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 3. Mobile P2P file sharing
without invalidation: system size vs.
hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

St
al

e
H

it
 R

at
e

Number of Nodes

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 4. Mobile P2P file sharing
without invalidation: system size vs.
stale hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

H
it

 R
at

e

Value Timeout (s)

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 5. Mobile P2P file sharing
with value timeouts: duration vs. hit
rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

St
al

e
H

it
 R

at
e

Value Timeout (s)

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 6. Mobile P2P file sharing
with value timeouts: duration vs.
stale hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

Value Timeout (s)

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 7. Mobile P2P file sharing
with value timeouts: duration vs.
coherence efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

Resent Interval (s)

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 8. Mobile P2P file sharing
with flooded invalidations: resent-
time vs. coherence efficiency

index cache size from 512 to 2048 entries, i.e., by
factor 4, only increases the hit rate about 10% for
systems comprising of many nodes.

Stale hit rates as a function of system size is plotted in
Figure 4. We find that without invalidation the stale hit
rate is at most 0.4. For smaller index cache sizes, the
stale hit rate decreases with system size. Jointly
considering Figures 3 and 4 reveals that for increasing
system sizes the stale hit rate drops rapidly at the point
when the growth of the hit rate slows down. Looking
closer at the index caches in these scenarios, we find
that the cache content is highly variable. Therefore,
stale index entries are removed early from the caches.
We conclude from Figure 3 that large caches yield a
high amount of stale hits when no invalidation
mechanism is used. In contrary, small index caches
naturally reduce stale hits, while they fail to provide
high hit rates. This evidently illustrates the need for
invalidation mechanisms in order to achieve both high
hit rates and low stale hit rates.

V.B.2. Impact of Configurable Value Timeouts

For the following experiment, we fix system size to 80
nodes and investigate the performance of basic PDI
extended by value timeouts as implicit invalidation
mechanism. Figure 5 plots hit rates versus timeout
durations for cache entries. As value timeouts
invalidate both stale and up-to-date index entries, the
hit rate increases with increasing timeout duration.
Thus, invalidations occur less frequently.

Unfortunately, as Figure 6 reveals, the stale hit rate
increases, too. However, comparing Figures 5 and 6
illustrates that the stale hit rate grows almost linear with
an increasing timeout duration while hit rate grows in a
log-like fashion. Based on this observation, we choose
low timeout duration in order to limit the decrease in hit
rate. For example, given an index cache with 2048
entries, a timeout of 1000 seconds decreases the hit rate
by about 0.07, while the stale hit rate is decreased from
0.5 to 0.11. That is about 75% improvement compared
to the corresponding scenario without invalidation as
shown in Figures 3 and 4, respectively. Note that the
optimal timeout duration clearly depends on the rate of
modification of the information as well as on the arrival
and departure rates for nodes. Thus, a timeout of 1000s
may not be the best choice for all application scenarios.
To gain further inside into the behavior of value
timeouts, Figure 7 plots the coherence efficiency versus
timeout duration. We find that the coherence efficiency
rapidly drops with increasing timeout duration due to
more infrequently occurring invalidations. Surprisingly,
we find that value timeouts are less efficient for small
cache sizes than for large ones. Again, this is a
confirmation that small caches naturally reduce hits for
stale index entries by frequent replacements, shortening
the room for improvements by a timeout-based
invalidation mechanism. We conclude from Figures 5
to 7 that value timeouts provide an efficient mechanism
for implementing implicit invalidation, especially for
large index caches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

H
it

 R
at

e

Invalidation Cache Size

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 9. Mobile P2P file sharing
with invalidation caches: cache size
vs. hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

St
al

e
H

it
 R

at
e

Invalidation Cache Size

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 10. Mobile P2P file sharing
with invalidation caches: cache size
vs. stale hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

Invalidation Cache Size

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 11. Mobile P2P file sharing
with invalidation caches: cache size
vs. coherence efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

H
it

 R
at

e

Number of Nodes

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 12. Mobile P2P file sharing
with integrated approach: system
size vs. hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

St
al

e
H

it
 R

at
e

Number of Nodes

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 13. Mobile P2P file sharing
with integrated approach: system
size vs. stale hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

Number of Nodes

32 Index Entries
128 Index Entries
512 Index Entries

2048 Index Entries

Figure 14. Mobile P2P file sharing
with integrated approach: system
size vs. coherence efficiency

V.B.3. Impact of Lazy Invalidation Caches

In the following experiment, we investigate the
performance of lazy invalidation caches as explicit
invalidation mechanisms. As above, the system size is
kept fixed to 80 nodes. Figure 8 plots the coherence
efficiency achieved by pure periodical flooding of
invalidation messages without using invalidation caches
versus re-sent time, i.e., the interval between two
successive transmissions of an invalidation message.
We find that independent of the re-sent time the
coherence efficiency is below 0.1 regardless of index

cache size. Note that due to weak connectivity, flooding
of invalidation messages cannot eliminate all stale
index entries. Subsequently, the epidemic dissemination
of remaining index entries leads to a redistribution of
stale values. Thus, as illustrated by Figure 8, periodic
flooding of invalidation messages fails to implement
explicit invalidations.

Subsequently, we investigate performance of the
epidemic dissemination of invalidation messages using
invalidation caches. In various experiments, we
investigated the sensitivity of all performance measures
to the TTLinv. Due to space limitations, we do not show
these performance results. We found that performance
does not significantly increase for TTLinv > 2 hops.
Thus, we set TTLinv = 2 hops in all subsequent
experiments. Figure 9 illustrates that lazy invalidation
caches regardless of their size do not affect the hit rate.
This is because opposed to value timeouts explicit

invalidation messages only invalidate stale index
entries.

However, lazy invalidation caches significantly reduce
the stale hit rate, especially for large index cache sizes,
as shown in Figure 10. We find that for large caches the
stale hit rate is reduced by more than 50% compared to
Figure 4. Note that if the invalidation cache size
increases beyond 20% of the index cache size, no
significant further reduction of the stale hit rate can be
achieved. For practical applications, this means that the
invalidation caches can be small compared to index
caches. This observation is confirmed by the results for
the coherence efficiency shown in Figure 11. Opposed
to the coherence efficiency of value timeouts, the
coherence efficiency of lazy invalidation caches is best
for small cache sizes. Compared to Figure 7, we find
that the coherence efficiency of lazy invalidation caches
is smaller than for value timeouts when using large
index caches. To understand this observation, recall that
nodes leaving the system do not explicitly invalidate all
index entries they have supplied, a worst-case scenario
for each explicit invalidation mechanism. We conclude
from Figures 9 to 11 that lazy invalidation caches
efficiently implement explicit invalidation.

V.B.4. Performance of the Integrated Invalidation
Approach

In a last experiment, we investigate the performance of
an integrated approach combining both value timeouts
and lazy invalidation caches to take into account both

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

H
it

 R
at

e

Number of Nodes

16 Index Entries
32 Index Entries
64 Index Entries

128 Index Entries

Figure 15. Mobile IM without
invalidation: system size vs. hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

St
al

e
H

it
 R

at
e

Number of Nodes

16 Index Entries
32 Index Entries
64 Index Entries

128 Index Entries

Figure 16. Mobile IM without
invalidation: system size vs. stale
hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

Timeout (s)

16 Index Entries
32 Index Entries
64 Index Entries

128 Index Entries

Figure 17. Mobile IM with value
timeouts: duration vs. coherence
efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

Invalidation Cache Size

16 Index Entries
32 Index Entries
64 Index Entries

128 Index Entries

Figure 18. Mobile IM with
invalidation caches: cache size vs.
coherence efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

St
al

e
H

it
 R

at
e

Number of Nodes

16 Index Entries
32 Index Entries
64 Index Entries

128 Index Entries

Figure 19. Mobile IM with
integrated approach: system size vs.
stale hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

H
it

 R
at

e

Number of Nodes

16 Index Entries
32 Index Entries
64 Index Entries

128 Index Entries

Figure 20. Mobile IM with
integrated approach: system size vs.
hit rate

weak connectivity and modification of information. We
fix the duration of the value timeout to 1000s and the
invalidation cache size to 128 entries. Figure 12 plots
hit rates versus system sizes. We find that hit rate is
reduced mostly for small systems due to invalidations
for up-to-date index entries by value timeouts. This
leads to a decrease of at most 20%. The performance of
index cache sizes of both 512 and 2048 is equal
because a large cache cannot benefit from long-term
correlations between requests due to the short timeout.
For growing system sizes, the hit rate converges
towards results without an invalidation mechanism as
already shown in Figure 3.

As compensation of the reduction of hit rate, the stale
hit rate is significantly reduced compared to a system
without invalidation. As shown in Figures 13 and 14,
the stale hit rate is highest and coherence efficiency is
worst for medium system size and sufficient large index
cache sizes. The reason is that a fixed cache size of 128
entries is somewhat to large for small systems, while
for large systems the natural limit of stale index entries
illustrated in Section V.B increases the coherence
efficiency. Again, the coherence efficiency drops
rapidly for small index cache sizes due to natural
reduction of stale hits. We conclude from Figures 12 to
14 that the integrated approach comprising of the
introduced implicit and explicit invalidation
mechanisms can effectively handle both spontaneous
node departures and modification of information. In
fact, for large index caches, the stale hit rate can be
reduced by more than 85%.

V.C. Performance of PDI in a Mobile Instant
Messaging Application

In a second set of experiments, we look at the
performance of PDI in the mobile IM application. Due
to space limitations, we omit a detailed description of
the results and provide just a brief comparison to the
curves for the mobile P2P file sharing application.
When not employing any invalidation mechanism in the
mobile IM application, we found that hit rate increases
to more than 0.7 for systems with large node density
and sufficient index cache sizes (Figure 15). Due to a
significantly smaller number of values, even small
index caches can provide sufficient hit rate compared to
the P2P file sharing application. Nevertheless, in such
systems stale hit rate is more than 0.58 even for small
index caches (Figure 16), which in general tend to
reduce stale hit rate due to frequently changing cache
content as shown in Section V.B.1. Fortunately, for
most configurations both value time-outs (Figure 17)
and lazy invalidation caches (Figure 18) show higher
coherence efficiency than in the P2P file sharing
application. As a result, a hybrid approach integrating
both invalidation mechanisms can reduce stale hit rate
down to 0.1 even for large systems and large index
caches (Figure 19), i.e., a reduction of about 88%.
Opposed to the results obtained for mobile P2P file
sharing, hybrid invalidation in the IM application even
increase hit rate, because it clears index cache space
wasted for stale index entries (Figure 20). We conclude
from Figures 15 to 20 that PDI can be efficiently
employed for tracking presence state in a mobile IM
application.

Conclusion

We introduced a distributed lookup service for mobile
applications denoted as Passive Distributed Indexing
(PDI) and presented invalidation mechanisms for
reducing inconsistency in PDI index caches. PDI stores
entries in form of (key, value) pairs in index caches
located in each mobile device. For implementing
implicit invalidation of index entries, value timeouts
were proposed. The epidemic distribution of
invalidation messages based on lazy invalidation caches
implemented explicit invalidation. Presented simulation
studies using ns-2 showed that PDI achieves hit rates of
up to 0.8 for both a mobile P2P file sharing and a
mobile IM application. With the integration of both
invalidation mechanisms, the number of stale values
returned on a query is reduced to below 5% for the
mobile P2P file sharing and below 10% for the mobile
IM application. We conjecture that optimizing the
duration for value timeouts and the size for lazy
invalidation caches will further improve hit rate.

References
[1] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J.

Jetcheva, A Performance Comparison of Multi-
Hop Wireless Ad Hoc Network Routing Protocols,
Proc. 6th ACM/IEEE MobiCom 98, Dallas, TX, 85-
97, 1998.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J.
Larson, S. Shenker, H. Sturgis, D. Swinehart, and
D. Terry, Epidemic Algorithms for Replicated
Database Maintenance, Proc. 6th Symp. on
Principles of Distributed Computing (PODC
1987), Vancouver, Canada, 1-12, 1987.

[3] K. Fall and K. Varadhan (editors), The ns-2
manual, Technical Report, The VINT Project, UC
Berkeley, LBL, and Xerox PARC, 2003.

[4] S. Goel, M. Singh, D. Xu, and B. Li, Efficient
Peer-to-Peer Data Dissemination in Mobile Ad-
Hoc Networks, Proc. Int. Workshop on Ad Hoc
Networking (IWAHN 2002), Vancouver, BC, 2002.

[5] W. Heinzelman, J. Kulik, and H. Balakrishnan,
Adaptive Protocols for Information Dissemination
in Wireless Sensor Networks, Proc 5th ACM/IEEE
MobiCom 99, Seattle, WA, 174-185, 1999.

[6] K. Hanna, B. Levine, and R. Manmatha, Mobile
Distributed Information Retrieval For Highly-
Partitioned Networks, Proc. 11th IEEE Int. Conf.
on Network Protocols (ICPN 2003), Atlanta, GA,
2003.

[7] IEEE Computer Society LAN MAN Standards
Committee, Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,

IEEE Standard 802.11-1997, New York, NY,
1997.

[8] A. Khelil, C. Becker, J. Tian, and K. Rothermel,
An Epidemic Model for Information Diffusion in
MANETs, Proc. 5th ACM Int. Workshop on
Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM 2002), Atlanta,
Georgia, 2002.

[9] C. Lindemann and O. Waldhorst, A Distributed
Search Service for Peer-to-Peer File Sharing in
Mobile Applications, Proc. 2nd IEEE Conf. on
Peer-to-Peer Computing (P2P 2002), Linköping,
Sweden, 71-83, 2002.

[10] Internet Engeneering Task Force Working Group
Mobile Ad hoc Networks (MANET).
http://www.ietf.org/html.charters/ manet-
charter.html.

[11] P. Mockapetris, Domain Names - Concepts and
Facilities, IETF Request for Comments 1034,
1987.

[12] M. Papadopouli and H. Schulzrinne, Effects of
Power Conservation, Wireless Coverage and
Cooperation on Data Dissemination among Mobile
Devices, Proc. 2nd ACM MobiHoc 2001, Long
Beach, NY, 117-127, 2001.

[13] M. Papadopouli and H. Schulzrinne, Performance
of Data Dissemination and Message Relaying in
Mobile Ad Hoc Networks, Technical Report
CUCS-004-02, Columbia University, 2003. Under
submission.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker, A Scalable Content-Addressable
Network, Proc. ACM SIGCOMM 2001, San
Diego, CA., 149-160, 2001.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications, Proc.
ACM SIGCOMM 2001, San Diego, CA, 149-160,
2001.

[16] K. Sripanidkulchai, The Popularity of Gnutella
Queries and its Implications on Scalability. Proc.
O'Reilly Peer-to-Peer and Web Services Conf.,
2001

[17] B. Yang and H. Garcia-Molina, Comparing Hybrid
Peer-to-Peer Systems, Proc. 27th Int. Conf. on Very
Large Data Bases, Rome, Italy, 561-570, 2001.

[18] Y. Xie and D. O’Hallaron, Locality in Search
Engine Queries and Its Implications for Caching,
Proc. IEEE INFOCOM 2002, New York, NJ,
2002.

