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ABSTRACT 
This paper presents a general-purpose distributed lookup 
service, denoted Passive Distributed Indexing (PDI). PDI 
stores entries in form of (key, value) pairs in index caches 
located in each mobile device. Index caches are filled by 
epidemic dissemination of popular index entries. By exploiting 
node mobility, PDI can resolve most queries locally without 
sending messages outside the radio coverage of the inquiring 
node. Thus, PDI reduces network traffic for the resolution of 
keys to values. For keeping index caches coherent, 
configurable value timeouts implementing implicit 
invalidation and lazy invalidation caches implementing 
explicit invalidation are introduced. Inconsistency in index 
caches due to weak connectivity or node failure is handled by 
value timeouts. Lazy invalidation caches reduce the fraction of 
stale index entries due to modified data at the origin node. 
Similar to index caches, invalidation caches are filled by 
epidemic distributions of invalidation messages. Simulation 
results show that with the suitable integration of both 
invalidation mechanisms, more than 95% of results delivered 
by PDI index caches are up-to-date for the considered 
scenario. 
Categories and Subject Descriptors 
C.2.4 [Computer Communication Networks]: Distributed 
Systems – Distributed Applications, Distributed Databases; H.3.3 
[Information Storage and Retrieval]: Information Search and 
Retrieval – Search process; C.4 [Performance of Systems] – 
Design Studies; 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Consistency maintenance in weakly connected environments, data 
caching, ad-hoc networked databases, epidemic algorithms for 
data dissemination. 

1. INTRODUCTION 
Many distributed applications require global resolution of 
application-specific keys to application-specific values, a 
functionality provided by a lookup service. Perhaps the most 
prominent lookup service is the Domain Name System (DNS, 
[11]), which resolves each host name to the corresponding IP 
address. Similarly, instant messaging systems require a one-to-
one mapping of a user ID to the current user’s terminal or 
availability state. Further examples of lookup services include 
Internet search engines and distributed information retrieval 
systems, which provide for each query consisting of keywords a 
one-to-many mapping to matching documents. Recent research 
efforts in peer-to-peer technology [14], [15] aim at building 
Internet-scale distributed hash tables which provide a general-
purpose approach for mapping keys to values.  

In mobile and wireless environments, weak connectivity or even 
disconnected operation hampers the employment of a centralized 
lookup service. The smart collaboration of mobile devices in an 
ad hoc fashion constitutes an attractive alternative for 
implementing an effective distributed lookup service for such 
scenarios. Suitable methods for implementing such collaboration 
constitute epidemic algorithms. Such algorithms transmit 
information when nodes get in direct contact, similar to the 
transmission of an infectious disease between individuals. 
Mathematical models for the spread of epidemic diseases have 
been widely studied. There exist applications of epidemic 
algorithms in various fields of computer science, e.g., for the 
maintenance of replicated databases [2]. Papadopouli and 
Schulzrinne introduced seven degrees of separation (7DS), a 
system for mobile Internet access based on web document 
dissemination between mobile users [12], [13]. To locate a web 
document, a 7DS node broadcasts a query message to all mobile 
nodes currently located inside its radio coverage. Recipients of 
the query send response messages that contain file descriptors of 
matching web documents stored in their local file caches. 
Subsequently, such documents can be downloaded with HTTP by 
the inquiring mobile node. Web documents may be distributed to 
other nodes that move into radio coverage, implementing an 
epidemic spread of information.  

Using a related approach, Goel, Singh, Xu and Li proposed 
broadcasting segments of shared files using redundant tornado 
encoding [4]. Their approach enables nodes to restore a file, if a 
sufficient number of different segments have been received from 
one or more sources. Khelil, Becker, Tian, and Rothermel 
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(a) The mobile phone broadcasts a query for key k, which matches 
value v based in the local index of the notebook.  
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(b) The notebook broadcasts a response for (k,v). All devices inside 
the radio coverage receive it and store (k,v) in their index caches. 
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(c) After changing its position, the second mobile phone receives a 

query for key k broadcasted by the PDA. 
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(d) The second mobile phone generates a response for (k,v) from the 
index cache on behalf of the notebook. 
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Figure 1. Illustration of epidemic information dissemination with PDI 

presented an epidemic model for a simple information diffusion 
algorithm [8] inspired by the SPIN-1 protocol [5]. Both systems 
implement a push model for information dissemination. That is, 
shared data is advertised or even actively broadcasted without a 
node requesting it. Recently, Hanna, Levine, and Mamatha 
proposed a fault-tolerant distributed information retrieval system 
for peer-to-peer document sharing in mobile ad hoc environments 
[6]. Their approach distributes the index of a new document to a 
random set of nodes when the document is added to the system. 
The complete index of a document, i.e., all keywords matching it, 
constitutes the smallest unit of disseminated information.  

In this paper, we introduce a general-purpose distributed lookup 
service, denoted Passive Distributed Indexing (PDI). Building 
upon [9], PDI stores index entries in form of (key, value) pairs in 
index caches located in each mobile device. Index caches are 
filled by epidemic dissemination of popular index entries. Thus, 
by exploiting node mobility PDI can resolve most queries locally 
without sending messages outside the radio coverage of the 
inquiring node. Thus, PDI effectively reduces network traffic for 
the resolution of keys to values for applications possessing a 
sufficiently high degree of temporal locality in their query 
streams as known for web content, Internet search engines and 
P2P file sharing systems [16], [18]. Beyond [9], we generalize the 
semantics of key-to-value matching beyond the simple matching 
of keywords to document-sources. Thus, PDI supports arbitrary 
application-specific keys to be matched to application-specific 
values. For keeping index caches coherent, we introduce two 
novel consistency mechanisms for PDI index caches: (1) 
configurable value timeouts implementing implicit invalidation 
and (2) lazy invalidation caches implementing explicit 
invalidation. Inconsistencies in index caches due to weak 
connectivity or node failure are handled by value timeouts. Lazy 
invalidation caches reduce the fraction of stale index entries due 
to modified data at the origin node. Similar to the epidemic 
distribution of index entries, invalidation caches are filled by 
epidemic distributions of invalidation messages. 

As for PDI, a sufficiently high degree of locality in user queries is 
essential for all related approaches [4], [6], [8], [12], [13]. 
Opposed to 7DS [12], [13], PDI implements document search 
based on a distributed index rather than immediate document 
sharing. In fact, PDI disseminates individual index entries where 
as 7DS disseminates complete documents. Opposed to [4] and [8], 

PDI implements a pull model and does not advertise data yielding 
a substantial reduction of traffic over wireless links. In contrast to 
[6], PDI disseminates just a single key and one or more matching 
values rather than the complete index of a document. 
Furthermore, opposed to all related work, PDI provides effective 
means for coping with stale index entries due to weak 
connectivity, node failure, and modified data. Moreover, opposed 
to all related work, PDI cannot only be employed for P2P file 
sharing, but also for numerous other mobile applications like 
mobile instant messaging or a mobile information portal. 

In a comprehensive simulation study using ns-2, [3], we 
investigate the coherence of the key-to-value matching provided 
by PDI. The presented performance curves show that value 
timeouts reduce inconsistent results delivered by index cache due 
to intermitted connectivity or node failure by more than 75%. The 
employment of lazy invalidation caches reduces the fraction of 
stale index results by more than 50%. With the integration of both 
invalidation mechanisms, more than 95% of the results delivered 
by PDI index caches are up-to-date for the considered scenario.  

This paper is organized as follows. Section 2 summarizes the 
basic concepts of PDI. Section 3 introduces the two novel 
consistency mechanisms for PDI, value timeouts and lazy 
invalidation caches. Performance results for PDI with these 
consistency mechanisms are presented in Section 4. Finally, 
concluding remarks are given. 

2. Basic Concepts of PDI 
We assume a system consisting of several mobile nodes, e.g. 
mobile users equipped with notebooks or PDAs and wireless 
network interfaces as illustrated in Figure 1. All mobile nodes 
collaborate via a shared application that uses a distributed lookup 
service. Radio coverage is small compared to the area covered by 
all nodes, so that most nodes cannot contact each other directly. 
Thus, communication may be performed using several 
intermediate hops as in mobile ad hoc networks (MANET, [10]). 
Subsequently, we assume IEEE 802.11x as underlying radio 
technology [7]. However, we would like to point out that PDI 
could be employed on any radio technology that enables 
broadcast transmissions inside a node’s radio coverage. 

PDI implements a general-purpose lookup service for mobile 
applications. In general, PDI stores index entries in the form of 



pairs ( ),k v . Keys k and values v are both defined by the mobile 
application. In case of file sharing, keys are given by keywords 
derived from the file name or associated meta data. Values are 
given by references to files in form of URIs. Opposed to 
distributed hash-table systems [14], [15], PDI does neither limit 
the number of keys matching a value nor the number of values 
matched by a key. However, some mechanisms introduced in 
Section 3 require that a value is unique in the system, i.e., it is 
only added to the system by a single node. This can be easily 
achieved by extending the application specific value v by a unique 
node identifier ni  for node n. For example, the node identifier ni  
may be derived from the node’s IP address or the MAC address of 
the radio interface. For ease of exposition, we will abbreviate the 
unique value given by ( ), nv i  pairs just by v. 

A node n may contribute index entries of the form ( ),k v  to the 
system by inserting them in a local index. In Figure 1, the local 
index is drawn as the first box below each mobile device. We 
refer to such an index entry as supplied. The node n is called the 
origin node of an index entry. For example, the notebook shown 
in Figure 1 is the origin node of the index entry ( ),k v . A key k 
matches a value v, if ( ),k v  is currently supplied to the PDI 
system. Each node in the system may issue queries in order to 
resolve a key k to all matching values iv  (see Figure 1a). We refer 
to a node issuing a query as the inquiring node. We restrict 
ourselves to a query semantic given by conjunctions of keys, i.e., 
implementing Boolean AND. That is, for a query comprising of 
more than one key, a value matches the query, if it matches all 
keys. Note that the query semantic can be easily extended to 
additionally support disjunctions of keys, i.e., implementing 
Boolean OR, by including a bit vector indicating the matched 
keys for each value in the response message. 

Query messages are sent to the IP limited broadcast address 
255.255.255.255 and a well-defined port. Thus, all nodes located 
inside the radio coverage of the inquiring node receive a query 
message. These nodes may generate a response message. A 
response message contains the query and all matching values 
from either the local index or a second data structure called index 
cache. To enable epidemic data dissemination, PDI response 
messages are sent to the IP limited broadcast address 
255.255.255.255 and a well-defined port, too. Thus, all mobile 
nodes within the radio coverage of the responding node will 
overhear the message (Figure 1b). Not only the inquiring node but 
also all other mobile nodes that receive a response message 
extract all index entries and store them in the index cache (see 
Figure 1b). In Figure 1, index caches are drawn as the second box 
below mobile devices. Index entries from the index cache are 
used to locally resolve queries, if the origin nodes of matching 
values reside outside the radio coverage of the inquiring node (see 
Figures 1c and 1d). Obviously, the index cache size is limited to a 
maximum number of entries adjusted to the capabilities of the 
mobile device. The replacement policy least-recently-used (LRU) 
is employed when newly received index entry will see a full 
cache. Note that information is disseminated to all other nodes 
that are in direct contact, similar to the spread of an infectious 
disease. Due to the movement of nodes and overhearing response 
messages of neighboring nodes, index entries are disseminated 
within the network without costly global communication. In fact, 
PDI builds and maintains an index distributed among mobile node 
of the MANET in a passive way. 

Recall that responses derived from the index caches only contain 
index entries from remote hosts. Such responses may be out of 
date when the origin node either has left the system or has 
withdrawn the index entry from its local index. Thus, effective 
consistency mechanisms as introduced in Section 3 are the key for 
the effective design of PDI. 

To extend information dissemination beyond the radio coverage 
of inquiring nodes, PDI includes a message forwarding 
mechanism. Queries may be relayed a certain number of hops 
specified by the inquiring node in a time-to-live field (TTLquery). 
Similarly, response messages may be forwarded TTLquery hops. 
Before forwarding a response message, a mobile node removes all 
values found in the index cache from the message. For a detailed 
description of this concept, denoted as selective forwarding, we 
refer to [9]. 

Note that beside inconsistent results, PDI might even return no 
results to a query for key k  at all. This may occur, if the 
corresponding query neither reaches the origin node nor another 
node storing an index entry for value v  in its index cache. We 
refer to such unresolved query as false misses. For the application 
running on top of PDI, there are two ways to resolve false misses: 
First, the application can tolerate false misses and simply ignore 
them. Second, the application has to resort to a centralized lookup 
service via the cellular infrastructure of a mobile network as 
fallback. Since query streams for P2P file sharing and Internet 
search engines possess a high degree of temporal locality [16], 
[18], PDI will produce only few false misses for such 
applications.  

3. Means for Maintaining Index Consistency  
3.1 Consistency Issues for Mobile Systems  
As mentioned above, caching index entries may introduce 
inconsistency. For instance, when a node stops supplying an index 
entry (i.e., the pair ( ),k v  is removed from the local index of the 
node), copies of the index entry will remain in the index caches of 
other nodes. We refer to an index entry contained in a response 
message as fresh or up-to-date, if it is currently stored in the local 
index of the origin node. Otherwise, the index entry is denoted as 
stale. Stale index entries obviously yield stale search results and 
even disseminate in the system. As shown in Section 4.2, hits for 
stale index entries constitute a significant fraction of all results 
received in response to a query when no invalidation mechanism 
is used. In this section, we discuss invalidation mechanisms that 
can cope with both weak connectivity and modification of 
information. Since PDI has to deal with both sources of 
inconsistency, PDI implements an integrated approach that 
combines both invalidation mechanisms.  

Timeouts constitute a common concept in several areas of 
distributed applications, as they can assure cache consistency 
without the need to contact the source of the cached information. 
Examples include the invalidation of cached DNS records in the 
domain name system or the invalidation of cached Web 
documents in WWW caches. To achieve both maximum 
consistency and a sufficient number cache hits, it is crucial for a 
timeout-based invalidation mechanism that the timeout durations 
are chosen appropriately. In DNS, the origin DNS server specifies 
the timeout duration for each entry. In web caching, the adaptive 
TTL algorithm calculates the timeout duration from the last 
modification time of a document at the origin server. Note that 



(a) The notebook withdraws (k,v) from the local index and 
broadcasts an invalidation message for value v. 
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(b) The mobile phone relays the invalidation message and stores 
value v in the lazy invalidation cache. 
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(c) After changing its position, the mobile phone receives a response 

for the stale value v broadcasted by the PDA. 
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(d) The mobile phone sends an invalidation from the cache on behalf 
of the notebook. The PDA invalidates (k,v). 
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Figure 2. Epidemic dissemination of invalidation messages using lazy invalidation caches 

both approaches rely on information directly received from the 
origin server. In contrast, due to the epidemic dissemination, most 
index cache entries are extracted from responses comprising of 
entries of other index caches, i.e., without direct contact to the 
origin node. Thus, PDI defines the concept of value timeouts to 
approximate the most recent information about the state of an 
index entry at the origin node. 

Examples of explicit invalidation schemes include the 
invalidation of cached memory blocks in distributed shared 
memory (DSM) systems, or the invalidation of documents in web 
caches. To achieve consistency, the origin node of an item sends 
invalidation messages to exactly those nodes that are caching this 
item. In DSM systems, the origin node of a shared page sends 
invalidation messages to all nodes sharing this page. In web 
caching systems, the origin server of a web document sends 
invalidation messages to each web cache that holds a copy of the 
document. Note that both mechanisms require that the origin node 
knows where all copies of an item reside and that all sharers are 
reachable. In contrast, in a mobile environment consisting of 
nodes with limited resources, connectivity of nodes cannot be 
guaranteed nor directories for all cached copies of a shared item 
can be maintained. To address these constraints in mobile 
systems, PDI defines the concept of lazy invalidation caches 
implementing explicit invalidation of values. 

3.2 Configurable Value Timeouts for Dealing 
with Weak Connectivity and Node Failures 
The basic concepts of PDI as described in Section 2 do not take 
into account low connectivity and spontaneous departures of 
nodes; circumstances under which all information previously 
supplied becomes stale. Examples of these cases include node 
failure or nodes leaving the area covered by the system.  

Value timeouts limit the time for which any index entry ( ),k v  of 
a given value v will be stored in an index cache. By receiving a 
response from the origin node of ( ),k v , the corresponding value 
timeout will be reset. Let ( ),k va  be the time elapsed since ( ),k v  
has been extracted form a response message generated by its 
origin node. We define the age va  of value v as ( )( ),minv k k va a= , 
i.e., the time elapsed since the most recent response message of 
this kind was received. When at a node holds va T>  for the 

given timeout value T, all pairs ( ),k v  are removed from its index 
cache. PDI implements only one timeout per value v rather than 
an individual timeout for each index entry ( ),k v . This is because 
in most applications the fact that one index entry ( ),k v  for a 
given v expires indicates a substantial change of the value. 
Subsequently, all other index entries ( ),k v′  are likely to be 
influenced. For example, in a file sharing system, a pair 
(keyword_i, URI) is removed when the file specified by URI is 
withdrawn from the system. Thus, all other pairs (keyword_j, 
URI) also become stale. Note that depending on the application 
the concept of value timeouts can be easily extended to individual 
timeout durations vT  for each value v. Such duration may be 
included in a response message generated by the origin node. For 
ease of exposition, we assume in the remainder of this paper a 
global timeout value T for all values in the system. 

To determine the current age of a value, an age field is included in 
the response message for each value. This age field is set to zero 
in each response from the origin node. When receiving a response 
message, a node n extracts the age of each value and calculates 
the supply time vs . That is the time at which a response for this 
value was generated by the origin node. Assume that the response 
message contains age va , then vs  is determined by v n vs c a= − , 
where nc  denotes the local time of node n. vs  is stored in the 
index cache together with v. Note that v might already be present 
in the index cache with supply time vs′ . The copy the index cache 
might result from a more recent response by the origin node, i.e., 

v vs s′< . Thus, in order to relate the age of a value to the most 
current response from the origin node, the supply time is updated 
only if v vs s′> . When a node generates a response for a cached 
index entry ( ),k v , it sets the age field for each value v to 

v n va c s= − . Note that only time differences are transmitted in 
PDI messages, eliminating the need for synchronizing clocks of 
all participating nodes. 

3.3 Lazy Invalidation Caches for Dealing with 
Data Modification at Origin Node 
Additional to the scenarios described above, a node produces stale 
index entries by modifying information. That is the case when an 
index entry is removed from the local index. In a worst-case 
scenario, a node suddenly leaves the system and all index entries 
supplied by the node expire at the same time. One way to handle 



such modification of information is to wait until the timeouts of 
the values in the stale index entries elapse. Depending on the 
application and the timeout value T, this straightforward solution 
may cause severe inconsistency, especially if T is large. A more 
effective way to handle information modification in distributed 
applications constitutes the explicit invalidation by control 
messages. 

As basic idea of the explicit invalidation mechanism, a node 
removes all index entries ( ),k v  from the index cache when it 
receives an invalidation message for value v. Flooding is a 
straightforward way to propagate invalidation messages. To flood 
an invalidation message for value v , the node removing an index 
entry sends the message to the limited broadcast address. All 
mobile nodes that receive the message will relay it exactly once, 
so that the message is propagated to each node that is connected 
to the initial node via one or more hops. Unfortunately, in mobile 
systems even a multi-hop connection between two nodes 
frequently does not exist. Subsequently, stale index entries are 
still contained in the index caches of nodes not reached by the 
invalidation message. Note that the index entries will be 
redistributed in the system due to the epidemic dissemination. We 
will show in Section 4.3 that even repeated flooding of 
invalidation messages does not significantly reduce the number of 
hits for index entries.  

This observation is consistent with [2], which reports that deleted 
database items “resurrect” in a replicated database environment 
due to epidemic data dissemination. In [2], a solution is proposed 
that uses a special message to testify the deletion of an item, 
referred to as death certificate. Death certificates are actively 
disseminated along with ordinary data and deleted after a certain 
time. In contrast, we propose a mostly passive (or “lazy”) 
approach for the epidemic propagation of invalidation messages, 
which is illustrated in Figure 2. For the initial propagation of an 
invalidation message by the origin node, we rely on flooding as 
described above (Figure 2a). Each node maintains a data structure 
called lazy invalidation cache, which is drawn as a third box 
below the mobile devices in Figure 2. When a node receives an 
invalidation message for a value v it does not only relay it, but 
stores v in the invalidation cache (Figure 2b). Note that an entry 
for v is stored in the invalidation cache, regardless if the node 
stores any index entry ( ),k v  for v in the index cache. Thus, every 
node will contribute to the propagation of invalidation messages, 
so that distribution of information and invalidation messages is 
separated. To enable the epidemic propagation of the invalidation 
message, a node scans the invalidation cache for all values 
contained in an overheard response message (Figure 2c). If a 
value v′  is found, the node will generate an invalidation message 
for v′  itself, because the hit in the invalidation cache indicates 
that the index cache of a nearby node contains a stale entry 
(Figure 2d). The invalidation message is not flooded through the 
complete network, but only with a certain scope similar to 
forwarding query and response messages as described in Section 
2. A node that receives a cached invalidation message will store 
the included value v in the invalidation cache, and remove all 
index entries ( ),k v  from the index cache. Additionally, the node 
checks whether it has recently received hits for v in response to an 
own query, which must also be invalidated and may not be passed 
to the application using PDI. 

As the index cache size, the invalidation cache size is limited to a 
fixed number of values and LRU replacement is employed. In 

Section 4.3, we show that setting the invalidation cache size to a 
fraction below 20% of the index cache size achieves sufficient 
reduction of false hits assuming a reasonable rate of data 
modification. Note that LRU replacement does neither guarantee 
that an invalidation cache entry is kept until all stale index entries 
are invalidated, nor that it is removed after a certain time, 
inhibiting a node indefinitely from restoring a value it has once 
invalidated. Increasing the invalidation cache size solves the first 
problem, though, doing so amplifies the second problem. To 
avoid this tradeoff, storing the supply time of invalidation 
messages similar to the supply time of values as described by 
Section 3.2 yields an efficient mechanism to decide whether a 
result for a value is more recent than an invalidation message. 

4. Performance Studies 
4.1 Simulation Environment 
To evaluate the performance of the introduced consistency 
mechanisms for PDI, we conduct simulation experiments using 
the network simulator ns-2 [3]. We developed an ns-2 application 
implementing the basic concepts of PDI as described in Section 2 
as well as the two consistency mechanisms described in Section 3. 
An instance of the PDI application is attached to each simulated 
mobile device, using the UDP/IP protocol stack and a MAC layer 
according to the IEEE 802.11 standard for wireless 
communication [7]. All MAC layer parameters were configured 
to provide a radio coverage with a radius of 115m. We assume 
that NodesN  mobile nodes move in an area of 1000 m × 1000 m 
according to the random waypoint mobility model [1]. Maximum 
node speed is 1.5 m/s and a pause time between two movement 
epochs is 50 s. The random waypoint model is commonly used to 
mimic the movement of pedestrians. Note that these assumptions 
clearly constitute conservative assumptions for disseminating 
information by exploiting mobility. 

We considered four different sizes for PDI index caches 32, 128, 
512 and 2048 entries. In all experiments, we set the TTL for 
selective forwarding TTLquery = 4 hops, and for forwarding of 
invalidation messages TTLinv = 2 hops. We assume that each node 
contributes 16ValuesN =  values. Each value iv , 
0 Nodes Valuesi N N≤ < ⋅ , matches a randomly chosen set 0iK ⊂  of 
keys. To determine iK  for each value iv , we adopt the notion of 
selection power [17], which assumes that the probability that key 
j  matches a given value is ( )f j . Experiments have shown that 
( ) ( ) ( )1 jf j e λλ −=  for 100λ ≈  provides a sufficient model of 

selection power [17]. Following [16], [18], we assume a Zipf-like 
distribution with 0.9α =  for the probability ( )g j  that a given 
query is for key j  (i.e., ( ) 0.9g j j−≅ ) and a correlation between 
query popularity and query selection power, i.e., the most popular 
key 1  with popularity ( )1g  has the highest selection power 
( )1f  [17]. Each node issues queries for a randomly chosen key 

in exponentially distributed intervals with mean 120 s. For 
simplicity, we restrict queries to single keys, which are chosen 
randomly according to the popularity distribution ( )g j .  

To cover both spontaneous departures of nodes and data 
modifications, we assume arrivals and departures of nodes to be 
exponentially distributed. We considered a ratio between the 
arrival and the departure rate, so that approximately 30% of all 
nodes will depart during the considered simulation time. New 
nodes enter the system with empty index and invalidation caches 
and contribute values that are not used by any node already in the 
system. Leaving nodes do not send invalidation messages for 
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Figure 3. No invalidation: system size vs. 

hit rate 
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Figure 4. No invalidation: system size vs. 

stale hit rate  
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Figure 5. Value timeouts: duration vs. hit 

rate 
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Figure 6. Value timeouts: duration vs. 

stale hit rate 
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Figure 7. Value timeouts: duration vs. 

coherence efficiency  
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Figure 8. Flooded invalidations: resent-

time vs. coherence efficiency 

supplied data, i.e., all index entries supplied by a departing node 
expire. Additionally, each value expires exactly once in a 
simulation according to a uniform distribution. 

We choose performance measures to evaluate the accuracy and 
the coherence of the results delivered by PDI and the impact of 
the introduced invalidation mechanisms. Accuracy is measured by 
the hit rate HR , i.e., F FHR H K=  for FH  denoting the number 
of up-to-date hits and FK  the total number of all up-to-date 
matching values currently in the system. Note that hit rate can be 
compared to the information retrieval measure recall. Coherence 
is measured by the stale hit rate SHR , i.e., 

( )s s FSHR H H H= + , where SH  denotes the number of stale 
hits returned on a query. Note that stale hit rate is related to the 
information retrieval measure precision by 1precision SHR= − . 
As last measure, reduction of stale hits is measured by the 
coherence efficiency EF , i.e., ( )ˆ1 s sEF H H= − , where ˆ

sH  
denotes the number of hits for stale index entries without 
employing an invalidation mechanism. 

We conduct transient simulations starting with initially empty 
caches. For each run, the total simulation time was 2 hours. To 
avoid inaccuracy due to initial warm-ups, we reset all statistic 
counters after a warm-up period of 10 min. simulation time. For 
each point in all performance curves, we performed 100 
independent simulation runs and calculated corresponding 
performance measures at the end of the simulation. In all curves 
99% confidence intervals determined by independent replicates 
are included. 

4.2 Performance of PDI without Invalidations 
In a first experiment, we investigate the coherence of index 
caches maintained by PDI without the invalidation mechanisms 
presented in Section 3. These performance curves are shown in 
Figures 3 and 4. Figure 3 plots hit rates as a function of system 
size for different sizes of the index cache. The results reveal that 
hit rate increases with growing system size because an increasing 
number of nodes increase the dissemination of information. 
Furthermore, the increase slows down with increasing number of 
nodes because the total number of values in the overall system 

increases. In these cases, the hit rate is clearly limited by the 
overall index cache size. Note that increasing the index cache size 
from 512 to 2048 entries, i.e., by factor 4, only increases the hit 
rate about 10% for systems comprising of many nodes. 

Stale hit rates as a function of system size is plotted in Figure 4. 
We find that without invalidation the stale hit rate is at most 0.4. 
For smaller index cache sizes, the stale hit rate decreases with 
system size. Jointly considering Figures 3 and 4 reveals that for 
increasing system sizes the stale hit rate drops rapidly at the point 
when the growth of the hit rate slows down. Looking closer at the 
index caches in these scenarios, we find that the cache content is 
highly variable. Therefore, stale index entries are removed early 
from the caches. We conclude from Figure 3 that large caches 
yield a high amount of stale hits when no invalidation mechanism 
is used. In contrary, small index caches naturally reduce stale hits, 
while they fail to provide high hit rates. This evidently illustrates 
the need for invalidation mechanisms in order to achieve both 
high hit rates and low stale hit rates. 

4.3 Impact of Configurable Value Timeouts 
For the following experiment, we fix system size to 80 nodes and 
investigate the performance of basic PDI extended by value 
timeouts as implicit invalidation mechanism. Figure 5 plots hit 
rates versus timeout durations for cache entries. As value timeouts 
invalidate both stale and up-to-date index entries, the hit rate 
increases with increasing timeout duration. Thus, invalidations 
occur less frequently. Unfortunately, as Figure 6 reveals, the stale 
hit rate increases, too. However, comparing Figures 5 and 6 
illustrates that the stale hit rate grows almost linear with an 
increasing timeout duration while hit rate grows in a log-like 
fashion. Based on this observation, we choose low timeout 
duration in order to limit the decrease in hit rate. For example, 
given an index cache with 2048 entries, a timeout of 1000 
seconds decreases the hit rate by about 0.07, while the stale hit 
rate is decreased from 0.5 to 0.11. That is about 75% 
improvement compared to the corresponding scenario without 
invalidation as shown in Figures 3 and 4, respectively. Note that 
the optimal timeout duration clearly depends on the rate of 
modification of the information as well as on the arrival and 



departure rates for nodes. Thus, a timeout of 1000s may not be the 
best choice for all application scenarios. To gain further inside 
into the behavior of value timeouts, Figure 7 plots the coherence 
efficiency versus timeout duration. We find that the coherence 
efficiency rapidly drops with increasing timeout duration due to 
more infrequently occurring invalidations. Surprisingly, we find 
that value timeouts are less efficient for small cache sizes than for 
large ones. Again, this is a confirmation that small caches 
naturally reduce hits for stale index entries by frequent 
replacements, shortening the room for improvements by a 
timeout-based invalidation mechanism. We conclude from 
Figures 5 to 7 that value timeouts provide an efficient mechanism 
for implementing implicit invalidation, especially for large index 
caches. 

4.4 Impact of Lazy Invalidation Caches 
In the following experiment, we investigate the performance of 
lazy invalidation caches as explicit invalidation mechanisms. As 
above, the system size is kept fixed to 80 nodes. Figure 8 plots the 
coherence efficiency achieved by pure periodical flooding of 
invalidation messages without using invalidation caches versus 
re-sent time, i.e., the interval between two successive 
transmissions of an invalidation message. We find that 
independent of the re-sent time the coherence efficiency is below 
0.1 regardless of index cache size. Note that due to weak 
connectivity, flooding of invalidation messages cannot eliminate 
all stale index entries. Subsequently, the epidemic dissemination 
of remaining index entries leads to a redistribution of stale values. 
Thus, as illustrated by Figure 8, periodic flooding of invalidation 
messages fails to implement explicit invalidations. 

Subsequently, we investigate performance of the epidemic 
dissemination of invalidation messages using invalidation caches. 
In various experiments, we investigated the sensitivity of all 
performance measures to the TTLinv. Due to space limitations, we 
do not show these performance results. We found that 
performance does not significantly increase for TTLinv > 2 hops. 
Thus, we set TTLinv = 2 hops in all subsequent experiments. 
Figure 9 illustrates that lazy invalidation caches regardless of 
their size do not affect the hit rate. This is because opposed to 

value timeouts explicit invalidation messages only invalidate stale 
index entries. 

However, lazy invalidation caches significantly reduce the stale 
hit rate, especially for large index cache sizes, as shown in Figure 
10. We find that for large caches the stale hit rate is reduced by 
more than 50% compared to Figure 4. Note that if the invalidation 
cache size increases beyond 20% of the index cache size, no 
significant further reduction of the stale hit rate can be achieved. 
For practical applications, this means that the invalidation caches 
can be small compared to index caches. This observation is 
confirmed by the results for the coherence efficiency shown in 
Figure 11. Opposed to the coherence efficiency of value timeouts, 
the coherence efficiency of lazy invalidation caches is best for 
small cache sizes. Compared to Figure 7, we find that the 
coherence efficiency of lazy invalidation caches is smaller than 
for value timeouts when using large index caches. To understand 
this observation, recall that nodes leaving the system do not 
explicitly invalidate all index entries they have supplied, a worst-
case scenario for each explicit invalidation mechanism. We 
conclude from Figures 9 to 11 that lazy invalidation caches 
efficiently implement explicit invalidation.  

4.5 Performance of the Integrated 
Invalidation Approach 
In a last experiment, we investigate the performance of an 
integrated approach combining both value timeouts and lazy 
invalidation caches to take into account both weak connectivity 
and modification of information. We fix the duration of the value 
timeout to 1000s and the invalidation cache size to 128 entries. 
Figure 12 plots hit rates versus system sizes. We find that hit rate 
is reduced mostly for small systems due to invalidations for up-to-
date index entries by value timeouts. This leads to a decrease of at 
most 20%. The performance of index cache sizes of both 512 and 
2048 is equal because a large cache cannot benefit from long-term 
correlations between requests due to the short timeout. For 
growing system sizes, the hit rate converges towards results 
without an invalidation mechanism as already shown in Figure 3. 
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Figure 9. Invalidation caches: cache size 

vs. hit rate 
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Figure 10. Invalidation caches: cache size 

vs. stale hit rate 
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Figure 11. Invalidation caches: cache size 

vs. coherence efficiency  
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Figure 12. Integrated approach: system 

size vs. hit rate 
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Figure 13. Integrated approach: system 

size vs. stale hit rate 
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Figure 14. Integrated approach: system 

size vs. coherence efficiency 



As compensation of the reduction of hit rate, the stale hit rate is 
significantly reduced compared to a system without invalidation. 
As shown in Figures 13 and 14, the stale hit rate is highest and 
coherence efficiency is worst for medium system size and 
sufficient large index cache sizes. The reason is that a fixed cache 
size of 128 entries is somewhat to large for small systems, while 
for large systems the natural limit of stale index entries illustrated 
in Section 4.2 increases the coherence efficiency. Again, the 
coherence efficiency drops rapidly for small index cache sizes 
due to natural reduction of stale hits. We conclude from Figures 
12 to 14 that the integrated approach comprising of the introduced 
implicit and explicit invalidation mechanisms can effectively 
handle both spontaneous node departures and modification of 
information. In fact, for large index caches, the stale hit rate can 
be reduced by more than 85%.  

Conclusion 
We introduced a distributed lookup service for mobile 
applications denoted as Passive Distributed Indexing (PDI) and 
presented invalidation mechanisms for reducing inconsistency in 
PDI index caches. PDI stores entries in form of (key, value) pairs 
in index caches located in each mobile device. For implementing 
implicit invalidation of index entries, value timeouts were 
proposed. The epidemic distribution of invalidation messages 
based on lazy invalidation caches implemented explicit 
invalidation. Presented simulation studies using ns-2 showed that 
value timeouts reduce inconsistent results due to intermitted 
connectivity or node failure by more than 75%. The employment 
of lazy invalidation caches reduces the fraction of stale index 
results by more than 50%. The integration of both invalidation 
mechanisms achieves a coherence efficiency of more 95% for the 
considered scenario.  

Recall that in the simulation studies, we considered as a 
conservative assumption a mobility model for mimicking the 
movement of pedestrians. The spread of information by PDI is 
considerably faster for higher mobility. Thus, PDI is likely to 
achieve considerable higher hit rates while providing a 
comparable performance in terms of coherence efficiency for 
such scenarios. Furthermore, we conjecture that optimizing the 
duration for value timeouts and the size for lazy invalidation 
caches will further improve hit rate.  
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