
Consistency Mechanisms for a Distributed Lookup Service
supporting Mobile Applications

Christoph Lindemann and Oliver P. Waldhorst
University of Dortmund

Department of Computer Science
August-Schmidt-Str. 12

44227 Dortmund, Germany
http://www4.cs.uni-dortmund.de/~Lindemann/

ABSTRACT
This paper presents a general-purpose distributed lookup
service, denoted Passive Distributed Indexing (PDI). PDI
stores entries in form of (key, value) pairs in index caches
located in each mobile device. Index caches are filled by
epidemic dissemination of popular index entries. By exploiting
node mobility, PDI can resolve most queries locally without
sending messages outside the radio coverage of the inquiring
node. Thus, PDI reduces network traffic for the resolution of
keys to values. For keeping index caches coherent,
configurable value timeouts implementing implicit
invalidation and lazy invalidation caches implementing
explicit invalidation are introduced. Inconsistency in index
caches due to weak connectivity or node failure is handled by
value timeouts. Lazy invalidation caches reduce the fraction of
stale index entries due to modified data at the origin node.
Similar to index caches, invalidation caches are filled by
epidemic distributions of invalidation messages. Simulation
results show that with the suitable integration of both
invalidation mechanisms, more than 95% of results delivered
by PDI index caches are up-to-date for the considered
scenario.
Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems – Distributed Applications, Distributed Databases; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval – Search process; C.4 [Performance of Systems] –
Design Studies;

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Consistency maintenance in weakly connected environments, data
caching, ad-hoc networked databases, epidemic algorithms for
data dissemination.

1. INTRODUCTION
Many distributed applications require global resolution of
application-specific keys to application-specific values, a
functionality provided by a lookup service. Perhaps the most
prominent lookup service is the Domain Name System (DNS,
[11]), which resolves each host name to the corresponding IP
address. Similarly, instant messaging systems require a one-to-
one mapping of a user ID to the current user’s terminal or
availability state. Further examples of lookup services include
Internet search engines and distributed information retrieval
systems, which provide for each query consisting of keywords a
one-to-many mapping to matching documents. Recent research
efforts in peer-to-peer technology [14], [15] aim at building
Internet-scale distributed hash tables which provide a general-
purpose approach for mapping keys to values.

In mobile and wireless environments, weak connectivity or even
disconnected operation hampers the employment of a centralized
lookup service. The smart collaboration of mobile devices in an
ad hoc fashion constitutes an attractive alternative for
implementing an effective distributed lookup service for such
scenarios. Suitable methods for implementing such collaboration
constitute epidemic algorithms. Such algorithms transmit
information when nodes get in direct contact, similar to the
transmission of an infectious disease between individuals.
Mathematical models for the spread of epidemic diseases have
been widely studied. There exist applications of epidemic
algorithms in various fields of computer science, e.g., for the
maintenance of replicated databases [2]. Papadopouli and
Schulzrinne introduced seven degrees of separation (7DS), a
system for mobile Internet access based on web document
dissemination between mobile users [12], [13]. To locate a web
document, a 7DS node broadcasts a query message to all mobile
nodes currently located inside its radio coverage. Recipients of
the query send response messages that contain file descriptors of
matching web documents stored in their local file caches.
Subsequently, such documents can be downloaded with HTTP by
the inquiring mobile node. Web documents may be distributed to
other nodes that move into radio coverage, implementing an
epidemic spread of information.

Using a related approach, Goel, Singh, Xu and Li proposed
broadcasting segments of shared files using redundant tornado
encoding [4]. Their approach enables nodes to restore a file, if a
sufficient number of different segments have been received from
one or more sources. Khelil, Becker, Tian, and Rothermel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MobiDE’03, September 19, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-767-2/03/0009…$5.00.

(a) The mobile phone broadcasts a query for key k, which matches
value v based in the local index of the notebook.

(k1,v1)

...

...

...

...

...

...

...

(k,v)...

...

...

...

Query(k)Query(k)

(b) The notebook broadcasts a response for (k,v). All devices inside
the radio coverage receive it and store (k,v) in their index caches.

...

...

...

...

(k,v)

...

(k,v)

...

(k,v)

...

(k,v)

Response(k,v)Response(k,v)

(k,v)

(c) After changing its position, the second mobile phone receives a

query for key k broadcasted by the PDA.

...

...

...

(k,v)...

(k,v)

...

(k,v)

...

(k,v)

...

(k,v)

Query(k)Query(k)

(d) The second mobile phone generates a response for (k,v) from the
index cache on behalf of the notebook.

...

...

(k,v)

(k,v)...

(k,v)

...

(k,v)

...

(k,v)

...

(k,v)

Response(k,v)Response(k,v)

Figure 1. Illustration of epidemic information dissemination with PDI

presented an epidemic model for a simple information diffusion
algorithm [8] inspired by the SPIN-1 protocol [5]. Both systems
implement a push model for information dissemination. That is,
shared data is advertised or even actively broadcasted without a
node requesting it. Recently, Hanna, Levine, and Mamatha
proposed a fault-tolerant distributed information retrieval system
for peer-to-peer document sharing in mobile ad hoc environments
[6]. Their approach distributes the index of a new document to a
random set of nodes when the document is added to the system.
The complete index of a document, i.e., all keywords matching it,
constitutes the smallest unit of disseminated information.

In this paper, we introduce a general-purpose distributed lookup
service, denoted Passive Distributed Indexing (PDI). Building
upon [9], PDI stores index entries in form of (key, value) pairs in
index caches located in each mobile device. Index caches are
filled by epidemic dissemination of popular index entries. Thus,
by exploiting node mobility PDI can resolve most queries locally
without sending messages outside the radio coverage of the
inquiring node. Thus, PDI effectively reduces network traffic for
the resolution of keys to values for applications possessing a
sufficiently high degree of temporal locality in their query
streams as known for web content, Internet search engines and
P2P file sharing systems [16], [18]. Beyond [9], we generalize the
semantics of key-to-value matching beyond the simple matching
of keywords to document-sources. Thus, PDI supports arbitrary
application-specific keys to be matched to application-specific
values. For keeping index caches coherent, we introduce two
novel consistency mechanisms for PDI index caches: (1)
configurable value timeouts implementing implicit invalidation
and (2) lazy invalidation caches implementing explicit
invalidation. Inconsistencies in index caches due to weak
connectivity or node failure are handled by value timeouts. Lazy
invalidation caches reduce the fraction of stale index entries due
to modified data at the origin node. Similar to the epidemic
distribution of index entries, invalidation caches are filled by
epidemic distributions of invalidation messages.

As for PDI, a sufficiently high degree of locality in user queries is
essential for all related approaches [4], [6], [8], [12], [13].
Opposed to 7DS [12], [13], PDI implements document search
based on a distributed index rather than immediate document
sharing. In fact, PDI disseminates individual index entries where
as 7DS disseminates complete documents. Opposed to [4] and [8],

PDI implements a pull model and does not advertise data yielding
a substantial reduction of traffic over wireless links. In contrast to
[6], PDI disseminates just a single key and one or more matching
values rather than the complete index of a document.
Furthermore, opposed to all related work, PDI provides effective
means for coping with stale index entries due to weak
connectivity, node failure, and modified data. Moreover, opposed
to all related work, PDI cannot only be employed for P2P file
sharing, but also for numerous other mobile applications like
mobile instant messaging or a mobile information portal.

In a comprehensive simulation study using ns-2, [3], we
investigate the coherence of the key-to-value matching provided
by PDI. The presented performance curves show that value
timeouts reduce inconsistent results delivered by index cache due
to intermitted connectivity or node failure by more than 75%. The
employment of lazy invalidation caches reduces the fraction of
stale index results by more than 50%. With the integration of both
invalidation mechanisms, more than 95% of the results delivered
by PDI index caches are up-to-date for the considered scenario.

This paper is organized as follows. Section 2 summarizes the
basic concepts of PDI. Section 3 introduces the two novel
consistency mechanisms for PDI, value timeouts and lazy
invalidation caches. Performance results for PDI with these
consistency mechanisms are presented in Section 4. Finally,
concluding remarks are given.

2. Basic Concepts of PDI
We assume a system consisting of several mobile nodes, e.g.
mobile users equipped with notebooks or PDAs and wireless
network interfaces as illustrated in Figure 1. All mobile nodes
collaborate via a shared application that uses a distributed lookup
service. Radio coverage is small compared to the area covered by
all nodes, so that most nodes cannot contact each other directly.
Thus, communication may be performed using several
intermediate hops as in mobile ad hoc networks (MANET, [10]).
Subsequently, we assume IEEE 802.11x as underlying radio
technology [7]. However, we would like to point out that PDI
could be employed on any radio technology that enables
broadcast transmissions inside a node’s radio coverage.

PDI implements a general-purpose lookup service for mobile
applications. In general, PDI stores index entries in the form of

pairs (),k v . Keys k and values v are both defined by the mobile
application. In case of file sharing, keys are given by keywords
derived from the file name or associated meta data. Values are
given by references to files in form of URIs. Opposed to
distributed hash-table systems [14], [15], PDI does neither limit
the number of keys matching a value nor the number of values
matched by a key. However, some mechanisms introduced in
Section 3 require that a value is unique in the system, i.e., it is
only added to the system by a single node. This can be easily
achieved by extending the application specific value v by a unique
node identifier ni for node n. For example, the node identifier ni
may be derived from the node’s IP address or the MAC address of
the radio interface. For ease of exposition, we will abbreviate the
unique value given by (), nv i pairs just by v.

A node n may contribute index entries of the form (),k v to the
system by inserting them in a local index. In Figure 1, the local
index is drawn as the first box below each mobile device. We
refer to such an index entry as supplied. The node n is called the
origin node of an index entry. For example, the notebook shown
in Figure 1 is the origin node of the index entry (),k v . A key k
matches a value v, if (),k v is currently supplied to the PDI
system. Each node in the system may issue queries in order to
resolve a key k to all matching values iv (see Figure 1a). We refer
to a node issuing a query as the inquiring node. We restrict
ourselves to a query semantic given by conjunctions of keys, i.e.,
implementing Boolean AND. That is, for a query comprising of
more than one key, a value matches the query, if it matches all
keys. Note that the query semantic can be easily extended to
additionally support disjunctions of keys, i.e., implementing
Boolean OR, by including a bit vector indicating the matched
keys for each value in the response message.

Query messages are sent to the IP limited broadcast address
255.255.255.255 and a well-defined port. Thus, all nodes located
inside the radio coverage of the inquiring node receive a query
message. These nodes may generate a response message. A
response message contains the query and all matching values
from either the local index or a second data structure called index
cache. To enable epidemic data dissemination, PDI response
messages are sent to the IP limited broadcast address
255.255.255.255 and a well-defined port, too. Thus, all mobile
nodes within the radio coverage of the responding node will
overhear the message (Figure 1b). Not only the inquiring node but
also all other mobile nodes that receive a response message
extract all index entries and store them in the index cache (see
Figure 1b). In Figure 1, index caches are drawn as the second box
below mobile devices. Index entries from the index cache are
used to locally resolve queries, if the origin nodes of matching
values reside outside the radio coverage of the inquiring node (see
Figures 1c and 1d). Obviously, the index cache size is limited to a
maximum number of entries adjusted to the capabilities of the
mobile device. The replacement policy least-recently-used (LRU)
is employed when newly received index entry will see a full
cache. Note that information is disseminated to all other nodes
that are in direct contact, similar to the spread of an infectious
disease. Due to the movement of nodes and overhearing response
messages of neighboring nodes, index entries are disseminated
within the network without costly global communication. In fact,
PDI builds and maintains an index distributed among mobile node
of the MANET in a passive way.

Recall that responses derived from the index caches only contain
index entries from remote hosts. Such responses may be out of
date when the origin node either has left the system or has
withdrawn the index entry from its local index. Thus, effective
consistency mechanisms as introduced in Section 3 are the key for
the effective design of PDI.

To extend information dissemination beyond the radio coverage
of inquiring nodes, PDI includes a message forwarding
mechanism. Queries may be relayed a certain number of hops
specified by the inquiring node in a time-to-live field (TTLquery).
Similarly, response messages may be forwarded TTLquery hops.
Before forwarding a response message, a mobile node removes all
values found in the index cache from the message. For a detailed
description of this concept, denoted as selective forwarding, we
refer to [9].

Note that beside inconsistent results, PDI might even return no
results to a query for key k at all. This may occur, if the
corresponding query neither reaches the origin node nor another
node storing an index entry for value v in its index cache. We
refer to such unresolved query as false misses. For the application
running on top of PDI, there are two ways to resolve false misses:
First, the application can tolerate false misses and simply ignore
them. Second, the application has to resort to a centralized lookup
service via the cellular infrastructure of a mobile network as
fallback. Since query streams for P2P file sharing and Internet
search engines possess a high degree of temporal locality [16],
[18], PDI will produce only few false misses for such
applications.

3. Means for Maintaining Index Consistency
3.1 Consistency Issues for Mobile Systems
As mentioned above, caching index entries may introduce
inconsistency. For instance, when a node stops supplying an index
entry (i.e., the pair (),k v is removed from the local index of the
node), copies of the index entry will remain in the index caches of
other nodes. We refer to an index entry contained in a response
message as fresh or up-to-date, if it is currently stored in the local
index of the origin node. Otherwise, the index entry is denoted as
stale. Stale index entries obviously yield stale search results and
even disseminate in the system. As shown in Section 4.2, hits for
stale index entries constitute a significant fraction of all results
received in response to a query when no invalidation mechanism
is used. In this section, we discuss invalidation mechanisms that
can cope with both weak connectivity and modification of
information. Since PDI has to deal with both sources of
inconsistency, PDI implements an integrated approach that
combines both invalidation mechanisms.

Timeouts constitute a common concept in several areas of
distributed applications, as they can assure cache consistency
without the need to contact the source of the cached information.
Examples include the invalidation of cached DNS records in the
domain name system or the invalidation of cached Web
documents in WWW caches. To achieve both maximum
consistency and a sufficient number cache hits, it is crucial for a
timeout-based invalidation mechanism that the timeout durations
are chosen appropriately. In DNS, the origin DNS server specifies
the timeout duration for each entry. In web caching, the adaptive
TTL algorithm calculates the timeout duration from the last
modification time of a document at the origin server. Note that

(a) The notebook withdraws (k,v) from the local index and
broadcasts an invalidation message for value v.

(k,v)

...

(k,v)

...

(k,v)

...

...

(k,v)

...

(k,v)

... ...

...

...

...

...

...

...

Invalidate(v)

(b) The mobile phone relays the invalidation message and stores
value v in the lazy invalidation cache.

(k1,v1)

...

(k1,v1)

...

(k1,v1)

...

...

(k,v)

...

(k,v)

... ...

...

...

...

...

...

...

Invalidate(v)

v

...

(c) After changing its position, the mobile phone receives a response

for the stale value v broadcasted by the PDA.

(k1,v1)

...

(k1,v1)

...

(k1,v1)

...

...

(k,v)

...

(k,v)

... ...

...

...

v

...

...

v

Response(k,v)

...

(d) The mobile phone sends an invalidation from the cache on behalf
of the notebook. The PDA invalidates (k,v).

(k1,v1)

...

(k1,v1)

...

(k1,v1)

...

...

(k,v)

...

(k,v)

... v

...

...

v

...

...

v

Invalidate(v)

...

Figure 2. Epidemic dissemination of invalidation messages using lazy invalidation caches

both approaches rely on information directly received from the
origin server. In contrast, due to the epidemic dissemination, most
index cache entries are extracted from responses comprising of
entries of other index caches, i.e., without direct contact to the
origin node. Thus, PDI defines the concept of value timeouts to
approximate the most recent information about the state of an
index entry at the origin node.

Examples of explicit invalidation schemes include the
invalidation of cached memory blocks in distributed shared
memory (DSM) systems, or the invalidation of documents in web
caches. To achieve consistency, the origin node of an item sends
invalidation messages to exactly those nodes that are caching this
item. In DSM systems, the origin node of a shared page sends
invalidation messages to all nodes sharing this page. In web
caching systems, the origin server of a web document sends
invalidation messages to each web cache that holds a copy of the
document. Note that both mechanisms require that the origin node
knows where all copies of an item reside and that all sharers are
reachable. In contrast, in a mobile environment consisting of
nodes with limited resources, connectivity of nodes cannot be
guaranteed nor directories for all cached copies of a shared item
can be maintained. To address these constraints in mobile
systems, PDI defines the concept of lazy invalidation caches
implementing explicit invalidation of values.

3.2 Configurable Value Timeouts for Dealing
with Weak Connectivity and Node Failures
The basic concepts of PDI as described in Section 2 do not take
into account low connectivity and spontaneous departures of
nodes; circumstances under which all information previously
supplied becomes stale. Examples of these cases include node
failure or nodes leaving the area covered by the system.

Value timeouts limit the time for which any index entry (),k v of
a given value v will be stored in an index cache. By receiving a
response from the origin node of (),k v , the corresponding value
timeout will be reset. Let (),k va be the time elapsed since (),k v
has been extracted form a response message generated by its
origin node. We define the age va of value v as ()(),minv k k va a= ,
i.e., the time elapsed since the most recent response message of
this kind was received. When at a node holds va T> for the

given timeout value T, all pairs (),k v are removed from its index
cache. PDI implements only one timeout per value v rather than
an individual timeout for each index entry (),k v . This is because
in most applications the fact that one index entry (),k v for a
given v expires indicates a substantial change of the value.
Subsequently, all other index entries (),k v′ are likely to be
influenced. For example, in a file sharing system, a pair
(keyword_i, URI) is removed when the file specified by URI is
withdrawn from the system. Thus, all other pairs (keyword_j,
URI) also become stale. Note that depending on the application
the concept of value timeouts can be easily extended to individual
timeout durations vT for each value v. Such duration may be
included in a response message generated by the origin node. For
ease of exposition, we assume in the remainder of this paper a
global timeout value T for all values in the system.

To determine the current age of a value, an age field is included in
the response message for each value. This age field is set to zero
in each response from the origin node. When receiving a response
message, a node n extracts the age of each value and calculates
the supply time vs . That is the time at which a response for this
value was generated by the origin node. Assume that the response
message contains age va , then vs is determined by v n vs c a= − ,
where nc denotes the local time of node n. vs is stored in the
index cache together with v. Note that v might already be present
in the index cache with supply time vs′ . The copy the index cache
might result from a more recent response by the origin node, i.e.,

v vs s′< . Thus, in order to relate the age of a value to the most
current response from the origin node, the supply time is updated
only if v vs s′> . When a node generates a response for a cached
index entry (),k v , it sets the age field for each value v to

v n va c s= − . Note that only time differences are transmitted in
PDI messages, eliminating the need for synchronizing clocks of
all participating nodes.

3.3 Lazy Invalidation Caches for Dealing with
Data Modification at Origin Node
Additional to the scenarios described above, a node produces stale
index entries by modifying information. That is the case when an
index entry is removed from the local index. In a worst-case
scenario, a node suddenly leaves the system and all index entries
supplied by the node expire at the same time. One way to handle

such modification of information is to wait until the timeouts of
the values in the stale index entries elapse. Depending on the
application and the timeout value T, this straightforward solution
may cause severe inconsistency, especially if T is large. A more
effective way to handle information modification in distributed
applications constitutes the explicit invalidation by control
messages.

As basic idea of the explicit invalidation mechanism, a node
removes all index entries (),k v from the index cache when it
receives an invalidation message for value v. Flooding is a
straightforward way to propagate invalidation messages. To flood
an invalidation message for value v , the node removing an index
entry sends the message to the limited broadcast address. All
mobile nodes that receive the message will relay it exactly once,
so that the message is propagated to each node that is connected
to the initial node via one or more hops. Unfortunately, in mobile
systems even a multi-hop connection between two nodes
frequently does not exist. Subsequently, stale index entries are
still contained in the index caches of nodes not reached by the
invalidation message. Note that the index entries will be
redistributed in the system due to the epidemic dissemination. We
will show in Section 4.3 that even repeated flooding of
invalidation messages does not significantly reduce the number of
hits for index entries.

This observation is consistent with [2], which reports that deleted
database items “resurrect” in a replicated database environment
due to epidemic data dissemination. In [2], a solution is proposed
that uses a special message to testify the deletion of an item,
referred to as death certificate. Death certificates are actively
disseminated along with ordinary data and deleted after a certain
time. In contrast, we propose a mostly passive (or “lazy”)
approach for the epidemic propagation of invalidation messages,
which is illustrated in Figure 2. For the initial propagation of an
invalidation message by the origin node, we rely on flooding as
described above (Figure 2a). Each node maintains a data structure
called lazy invalidation cache, which is drawn as a third box
below the mobile devices in Figure 2. When a node receives an
invalidation message for a value v it does not only relay it, but
stores v in the invalidation cache (Figure 2b). Note that an entry
for v is stored in the invalidation cache, regardless if the node
stores any index entry (),k v for v in the index cache. Thus, every
node will contribute to the propagation of invalidation messages,
so that distribution of information and invalidation messages is
separated. To enable the epidemic propagation of the invalidation
message, a node scans the invalidation cache for all values
contained in an overheard response message (Figure 2c). If a
value v′ is found, the node will generate an invalidation message
for v′ itself, because the hit in the invalidation cache indicates
that the index cache of a nearby node contains a stale entry
(Figure 2d). The invalidation message is not flooded through the
complete network, but only with a certain scope similar to
forwarding query and response messages as described in Section
2. A node that receives a cached invalidation message will store
the included value v in the invalidation cache, and remove all
index entries (),k v from the index cache. Additionally, the node
checks whether it has recently received hits for v in response to an
own query, which must also be invalidated and may not be passed
to the application using PDI.

As the index cache size, the invalidation cache size is limited to a
fixed number of values and LRU replacement is employed. In

Section 4.3, we show that setting the invalidation cache size to a
fraction below 20% of the index cache size achieves sufficient
reduction of false hits assuming a reasonable rate of data
modification. Note that LRU replacement does neither guarantee
that an invalidation cache entry is kept until all stale index entries
are invalidated, nor that it is removed after a certain time,
inhibiting a node indefinitely from restoring a value it has once
invalidated. Increasing the invalidation cache size solves the first
problem, though, doing so amplifies the second problem. To
avoid this tradeoff, storing the supply time of invalidation
messages similar to the supply time of values as described by
Section 3.2 yields an efficient mechanism to decide whether a
result for a value is more recent than an invalidation message.

4. Performance Studies
4.1 Simulation Environment
To evaluate the performance of the introduced consistency
mechanisms for PDI, we conduct simulation experiments using
the network simulator ns-2 [3]. We developed an ns-2 application
implementing the basic concepts of PDI as described in Section 2
as well as the two consistency mechanisms described in Section 3.
An instance of the PDI application is attached to each simulated
mobile device, using the UDP/IP protocol stack and a MAC layer
according to the IEEE 802.11 standard for wireless
communication [7]. All MAC layer parameters were configured
to provide a radio coverage with a radius of 115m. We assume
that NodesN mobile nodes move in an area of 1000 m × 1000 m
according to the random waypoint mobility model [1]. Maximum
node speed is 1.5 m/s and a pause time between two movement
epochs is 50 s. The random waypoint model is commonly used to
mimic the movement of pedestrians. Note that these assumptions
clearly constitute conservative assumptions for disseminating
information by exploiting mobility.

We considered four different sizes for PDI index caches 32, 128,
512 and 2048 entries. In all experiments, we set the TTL for
selective forwarding TTLquery = 4 hops, and for forwarding of
invalidation messages TTLinv = 2 hops. We assume that each node
contributes 16ValuesN = values. Each value iv ,
0 Nodes Valuesi N N≤ < ⋅ , matches a randomly chosen set 0iK ⊂ of
keys. To determine iK for each value iv , we adopt the notion of
selection power [17], which assumes that the probability that key
j matches a given value is ()f j . Experiments have shown that
() () ()1 jf j e λλ −= for 100λ ≈ provides a sufficient model of

selection power [17]. Following [16], [18], we assume a Zipf-like
distribution with 0.9α = for the probability ()g j that a given
query is for key j (i.e., () 0.9g j j−≅) and a correlation between
query popularity and query selection power, i.e., the most popular
key 1 with popularity ()1g has the highest selection power
()1f [17]. Each node issues queries for a randomly chosen key

in exponentially distributed intervals with mean 120 s. For
simplicity, we restrict queries to single keys, which are chosen
randomly according to the popularity distribution ()g j .

To cover both spontaneous departures of nodes and data
modifications, we assume arrivals and departures of nodes to be
exponentially distributed. We considered a ratio between the
arrival and the departure rate, so that approximately 30% of all
nodes will depart during the considered simulation time. New
nodes enter the system with empty index and invalidation caches
and contribute values that are not used by any node already in the
system. Leaving nodes do not send invalidation messages for

0,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120
Number of Nodes

H
it

R
at

e

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 3. No invalidation: system size vs.

hit rate

0,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120
Number of Nodes

St
al

e
H

it
R

at
e

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 4. No invalidation: system size vs.

stale hit rate

0,0

0,2

0,4

0,6

0,8

1,0

0 500 1000 1500 2000 2500 3000
Timeout (s)

H
it

R
at

e

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 5. Value timeouts: duration vs. hit

rate

0,0

0,2

0,4

0,6

0,8

1,0

0 500 1000 1500 2000 2500 3000
Timeout (s)

St
al

e
H

it
R

at
e

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 6. Value timeouts: duration vs.

stale hit rate

0,0

0,2

0,4

0,6

0,8

1,0

0 500 1000 1500 2000 2500 3000
Timeout (s)

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 7. Value timeouts: duration vs.

coherence efficiency

0,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60
Resend Interval (s)

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 8. Flooded invalidations: resent-

time vs. coherence efficiency

supplied data, i.e., all index entries supplied by a departing node
expire. Additionally, each value expires exactly once in a
simulation according to a uniform distribution.

We choose performance measures to evaluate the accuracy and
the coherence of the results delivered by PDI and the impact of
the introduced invalidation mechanisms. Accuracy is measured by
the hit rate HR , i.e., F FHR H K= for FH denoting the number
of up-to-date hits and FK the total number of all up-to-date
matching values currently in the system. Note that hit rate can be
compared to the information retrieval measure recall. Coherence
is measured by the stale hit rate SHR , i.e.,

()s s FSHR H H H= + , where SH denotes the number of stale
hits returned on a query. Note that stale hit rate is related to the
information retrieval measure precision by 1precision SHR= − .
As last measure, reduction of stale hits is measured by the
coherence efficiency EF , i.e., ()ˆ1 s sEF H H= − , where ˆ

sH
denotes the number of hits for stale index entries without
employing an invalidation mechanism.

We conduct transient simulations starting with initially empty
caches. For each run, the total simulation time was 2 hours. To
avoid inaccuracy due to initial warm-ups, we reset all statistic
counters after a warm-up period of 10 min. simulation time. For
each point in all performance curves, we performed 100
independent simulation runs and calculated corresponding
performance measures at the end of the simulation. In all curves
99% confidence intervals determined by independent replicates
are included.

4.2 Performance of PDI without Invalidations
In a first experiment, we investigate the coherence of index
caches maintained by PDI without the invalidation mechanisms
presented in Section 3. These performance curves are shown in
Figures 3 and 4. Figure 3 plots hit rates as a function of system
size for different sizes of the index cache. The results reveal that
hit rate increases with growing system size because an increasing
number of nodes increase the dissemination of information.
Furthermore, the increase slows down with increasing number of
nodes because the total number of values in the overall system

increases. In these cases, the hit rate is clearly limited by the
overall index cache size. Note that increasing the index cache size
from 512 to 2048 entries, i.e., by factor 4, only increases the hit
rate about 10% for systems comprising of many nodes.

Stale hit rates as a function of system size is plotted in Figure 4.
We find that without invalidation the stale hit rate is at most 0.4.
For smaller index cache sizes, the stale hit rate decreases with
system size. Jointly considering Figures 3 and 4 reveals that for
increasing system sizes the stale hit rate drops rapidly at the point
when the growth of the hit rate slows down. Looking closer at the
index caches in these scenarios, we find that the cache content is
highly variable. Therefore, stale index entries are removed early
from the caches. We conclude from Figure 3 that large caches
yield a high amount of stale hits when no invalidation mechanism
is used. In contrary, small index caches naturally reduce stale hits,
while they fail to provide high hit rates. This evidently illustrates
the need for invalidation mechanisms in order to achieve both
high hit rates and low stale hit rates.

4.3 Impact of Configurable Value Timeouts
For the following experiment, we fix system size to 80 nodes and
investigate the performance of basic PDI extended by value
timeouts as implicit invalidation mechanism. Figure 5 plots hit
rates versus timeout durations for cache entries. As value timeouts
invalidate both stale and up-to-date index entries, the hit rate
increases with increasing timeout duration. Thus, invalidations
occur less frequently. Unfortunately, as Figure 6 reveals, the stale
hit rate increases, too. However, comparing Figures 5 and 6
illustrates that the stale hit rate grows almost linear with an
increasing timeout duration while hit rate grows in a log-like
fashion. Based on this observation, we choose low timeout
duration in order to limit the decrease in hit rate. For example,
given an index cache with 2048 entries, a timeout of 1000
seconds decreases the hit rate by about 0.07, while the stale hit
rate is decreased from 0.5 to 0.11. That is about 75%
improvement compared to the corresponding scenario without
invalidation as shown in Figures 3 and 4, respectively. Note that
the optimal timeout duration clearly depends on the rate of
modification of the information as well as on the arrival and

departure rates for nodes. Thus, a timeout of 1000s may not be the
best choice for all application scenarios. To gain further inside
into the behavior of value timeouts, Figure 7 plots the coherence
efficiency versus timeout duration. We find that the coherence
efficiency rapidly drops with increasing timeout duration due to
more infrequently occurring invalidations. Surprisingly, we find
that value timeouts are less efficient for small cache sizes than for
large ones. Again, this is a confirmation that small caches
naturally reduce hits for stale index entries by frequent
replacements, shortening the room for improvements by a
timeout-based invalidation mechanism. We conclude from
Figures 5 to 7 that value timeouts provide an efficient mechanism
for implementing implicit invalidation, especially for large index
caches.

4.4 Impact of Lazy Invalidation Caches
In the following experiment, we investigate the performance of
lazy invalidation caches as explicit invalidation mechanisms. As
above, the system size is kept fixed to 80 nodes. Figure 8 plots the
coherence efficiency achieved by pure periodical flooding of
invalidation messages without using invalidation caches versus
re-sent time, i.e., the interval between two successive
transmissions of an invalidation message. We find that
independent of the re-sent time the coherence efficiency is below
0.1 regardless of index cache size. Note that due to weak
connectivity, flooding of invalidation messages cannot eliminate
all stale index entries. Subsequently, the epidemic dissemination
of remaining index entries leads to a redistribution of stale values.
Thus, as illustrated by Figure 8, periodic flooding of invalidation
messages fails to implement explicit invalidations.

Subsequently, we investigate performance of the epidemic
dissemination of invalidation messages using invalidation caches.
In various experiments, we investigated the sensitivity of all
performance measures to the TTLinv. Due to space limitations, we
do not show these performance results. We found that
performance does not significantly increase for TTLinv > 2 hops.
Thus, we set TTLinv = 2 hops in all subsequent experiments.
Figure 9 illustrates that lazy invalidation caches regardless of
their size do not affect the hit rate. This is because opposed to

value timeouts explicit invalidation messages only invalidate stale
index entries.

However, lazy invalidation caches significantly reduce the stale
hit rate, especially for large index cache sizes, as shown in Figure
10. We find that for large caches the stale hit rate is reduced by
more than 50% compared to Figure 4. Note that if the invalidation
cache size increases beyond 20% of the index cache size, no
significant further reduction of the stale hit rate can be achieved.
For practical applications, this means that the invalidation caches
can be small compared to index caches. This observation is
confirmed by the results for the coherence efficiency shown in
Figure 11. Opposed to the coherence efficiency of value timeouts,
the coherence efficiency of lazy invalidation caches is best for
small cache sizes. Compared to Figure 7, we find that the
coherence efficiency of lazy invalidation caches is smaller than
for value timeouts when using large index caches. To understand
this observation, recall that nodes leaving the system do not
explicitly invalidate all index entries they have supplied, a worst-
case scenario for each explicit invalidation mechanism. We
conclude from Figures 9 to 11 that lazy invalidation caches
efficiently implement explicit invalidation.

4.5 Performance of the Integrated
Invalidation Approach
In a last experiment, we investigate the performance of an
integrated approach combining both value timeouts and lazy
invalidation caches to take into account both weak connectivity
and modification of information. We fix the duration of the value
timeout to 1000s and the invalidation cache size to 128 entries.
Figure 12 plots hit rates versus system sizes. We find that hit rate
is reduced mostly for small systems due to invalidations for up-to-
date index entries by value timeouts. This leads to a decrease of at
most 20%. The performance of index cache sizes of both 512 and
2048 is equal because a large cache cannot benefit from long-term
correlations between requests due to the short timeout. For
growing system sizes, the hit rate converges towards results
without an invalidation mechanism as already shown in Figure 3.

0,0

0,2

0,4

0,6

0,8

1,0

0 50 100 150 200
Invalidation Cache Size

H
it

R
at

e

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 9. Invalidation caches: cache size

vs. hit rate

0,0

0,2

0,4

0,6

0,8

1,0

0 50 100 150 200
Invalidation Cache Size

St
al

e
H

it
R

at
e

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 10. Invalidation caches: cache size

vs. stale hit rate

0,0

0,2

0,4

0,6

0,8

1,0

0 50 100 150 200
Invalidation Cache Size

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 11. Invalidation caches: cache size

vs. coherence efficiency

0,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120
Number of Nodes

H
it

R
at

e

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 12. Integrated approach: system

size vs. hit rate

0,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120
Number of Nodes

St
al

e
H

it
R

at
e

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 13. Integrated approach: system

size vs. stale hit rate

0,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120
Number of Nodes

C
oh

er
en

ce
 E

ff
ic

ie
nc

y

32 Index Cache Entries
128 Index Cache Entries
512 Index Cache Entries
2048 Index Cache Entries

Figure 14. Integrated approach: system

size vs. coherence efficiency

As compensation of the reduction of hit rate, the stale hit rate is
significantly reduced compared to a system without invalidation.
As shown in Figures 13 and 14, the stale hit rate is highest and
coherence efficiency is worst for medium system size and
sufficient large index cache sizes. The reason is that a fixed cache
size of 128 entries is somewhat to large for small systems, while
for large systems the natural limit of stale index entries illustrated
in Section 4.2 increases the coherence efficiency. Again, the
coherence efficiency drops rapidly for small index cache sizes
due to natural reduction of stale hits. We conclude from Figures
12 to 14 that the integrated approach comprising of the introduced
implicit and explicit invalidation mechanisms can effectively
handle both spontaneous node departures and modification of
information. In fact, for large index caches, the stale hit rate can
be reduced by more than 85%.

Conclusion
We introduced a distributed lookup service for mobile
applications denoted as Passive Distributed Indexing (PDI) and
presented invalidation mechanisms for reducing inconsistency in
PDI index caches. PDI stores entries in form of (key, value) pairs
in index caches located in each mobile device. For implementing
implicit invalidation of index entries, value timeouts were
proposed. The epidemic distribution of invalidation messages
based on lazy invalidation caches implemented explicit
invalidation. Presented simulation studies using ns-2 showed that
value timeouts reduce inconsistent results due to intermitted
connectivity or node failure by more than 75%. The employment
of lazy invalidation caches reduces the fraction of stale index
results by more than 50%. The integration of both invalidation
mechanisms achieves a coherence efficiency of more 95% for the
considered scenario.

Recall that in the simulation studies, we considered as a
conservative assumption a mobility model for mimicking the
movement of pedestrians. The spread of information by PDI is
considerably faster for higher mobility. Thus, PDI is likely to
achieve considerable higher hit rates while providing a
comparable performance in terms of coherence efficiency for
such scenarios. Furthermore, we conjecture that optimizing the
duration for value timeouts and the size for lazy invalidation
caches will further improve hit rate.

References
[1] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, A

Performance Comparison of Multi-Hop Wireless Ad Hoc
Network Routing Protocols, Proc. 6th ACM/IEEE MobiCom
98, Dallas, TX, 85-97, 1998.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry, Epidemic
Algorithms for Replicated Database Maintenance, Proc. 6th
Symp. on Principles of Distributed Computing (PODC 1987),
Vancouver, Canada, 1-12, 1987.

[3] K. Fall and K. Varadhan (editors), The ns-2 manual, Technical
Report, The VINT Project, UC Berkeley, LBL, and Xerox
PARC, 2003.

[4] S. Goel, M. Singh, D. Xu, and B. Li, Efficient Peer-to-Peer
Data Dissemination in Mobile Ad-Hoc Networks, Proc. Int.

Workshop on Ad Hoc Networking (IWAHN 2002), Vancouver,
BC, 2002.

[5] W. Heinzelman, J. Kulik, and H. Balakrishnan, Adaptive
Protocols for Information Dissemination in Wireless Sensor
Networks, Proc 5th ACM/IEEE MobiCom 99, Seattle, WA,
174-185, 1999.

[6] K. Hanna, B. Levine, and R. Manmatha, Mobile Distributed
Information Retrieval For Highly-Partitioned Networks, Proc.
11th IEEE Int. Conf. on Network Protocols (ICPN 2003),
Atlanta, GA, 2003.

[7] IEEE Computer Society LAN MAN Standards Committee,
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, IEEE Standard 802.11-1997,
New York, NY, 1997.

[8] A. Khelil, C. Becker, J. Tian, and K. Rothermel, An Epidemic
Model for Information Diffusion in MANETs, Proc. 5th ACM
Int. Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM 2002), Atlanta,
Georgia, 2002.

[9] C. Lindemann and O. Waldhorst, A Distributed Search
Service for Peer-to-Peer File Sharing in Mobile Applications,
Proc. 2nd IEEE Conf. on Peer-to-Peer Computing (P2P 2002),
Linköping, Sweden, 71-83, 2002.

[10] Internet Engeneering Task Force Working Group Mobile Ad
hoc Networks (MANET). http://www.ietf.org/html.charters/
manet-charter.html.

[11] P. Mockapetris, Domain Names - Concepts and Facilities,
IETF Request for Comments 1034, 1987.

[12] M. Papadopouli and H. Schulzrinne, Effects of Power
Conservation, Wireless Coverage and Cooperation on Data
Dissemination among Mobile Devices, Proc. 2nd ACM
MobiHoc 2001, Long Beach, NY, 117-127, 2001.

[13] M. Papadopouli and H. Schulzrinne, Performance of Data
Dissemination and Message Relaying in Mobile Ad Hoc
Networks, Technical Report CUCS-004-02, Columbia
University, 2003. Under submission.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, A Scalable Content-Addressable Network, Proc.
ACM SIGCOMM 2001, San Diego, CA., 149-160, 2001.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan, Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications, Proc. ACM SIGCOMM 2001, San
Diego, CA, 149-160, 2001.

[16] K. Sripanidkulchai, The Popularity of Gnutella Queries and
its Implications on Scalability. Proc. O'Reilly Peer-to-Peer
and Web Services Conf., 2001

[17] B. Yang and H. Garcia-Molina, Comparing Hybrid Peer-to-
Peer Systems, Proc. 27th Int. Conf. on Very Large Data Bases,
Rome, Italy, 561-570, 2001.

[18] Y. Xie and D. O’Hallaron, Locality in Search Engine Queries
and Its Implications for Caching, Proc. IEEE INFOCOM
2002, New York, NJ, 2002.

