We propose a structural model that treats in a unified fashion both the
atomic motions and electronic excitations in quenched melts of pnictide and
chalcogenide semiconductors. In Part I (submitted to J. Chem. Phys.), we argued
these quenched melts represent aperiodic ppσ-networks that are highly
stable and, at the same time, structurally degenerate. These networks are
characterized by a continuous range of coordination. Here we present a
systematic way to classify these types of coordination in terms of discrete
coordination defects in a parent structure defined on a simple cubic lattice.
We identify the lowest energy coordination defects with the intrinsic midgap
electronic states in semiconductor glasses, which were argued earlier to cause
many of the unique optoelectronic anomalies in these materials. In addition,
these coordination defects are mobile and correspond to the transition state
configurations during the activated transport above the glass transition. The
presence of the coordination defects may account for the puzzling discrepancy
between the kinetic and thermodynamic fragility in chalcogenides. Finally, the
proposed model recovers as limiting cases several popular types of bonding
patterns proposed earlier, including: valence-alternation pairs, hypervalent
configurations, and homopolar bonds in heteropolar compounds.Comment: 17 pages, 15 figures, revised version, final version to appear in J.
Chem. Phy