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Knowing the depth structure of the environment is crucial for moving animals in many
behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation.
An important source of depth information is motion parallax. This powerful cue is
generated on the eyes during translatory self-motion with the retinal images of nearby
objects moving faster than those of distant ones. To investigate how the visual motion
pathway represents motion-based depth information we analyzed its responses to image
sequences recorded in natural cluttered environments with a wide range of depth
structures. The analysis was done on the basis of an experimentally validated model
of the visual motion pathway of insects, with its core elements being correlation-type
elementary motion detectors (EMDs). It is the key result of our analysis that the absolute
EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness
of environmental structures during translatory self-motion at a roughly constant velocity.
In other words, the output of the EMD array highlights contours of nearby objects. This
conclusion is largely independent of the scale over which EMDs are spatially pooled and
was corroborated by scrutinizing the motion energy profile after eliminating the depth
structure from the natural image sequences. Hence, the well-established dependence of
correlation-type EMDs on both velocity and textural properties of motion stimuli appears to
be advantageous for representing behaviorally relevant information about the environment
in a computationally parsimonious way.
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INTRODUCTION
Knowing the spatial structure of the surroundings is of crucial
importance for many animals, especially if the environment is
complex and cluttered. Spatial information is relevant for solving
tasks such as collision avoidance, targeting objects, or landmark
navigation. Depth information based on far-range mechanisms
is of particular importance during fast locomotion in which ani-
mals often need to respond to objects when these are still beyond
the range of close-up depth-sensing systems, such as stereoscopic
vision or tactile sensing (Collett and Harkness, 1982). Motion
cues are one powerful source of spatial information, since at least
during translatory self-motion the retinal images of environmen-
tal objects move faster the closer they are to the observer. Humans
experience motion parallax cues, for instance, when looking out
of the window of a train and may rely on them when steering a
car, especially at high velocities (Vaina et al., 2004).

In particular, flying insects or birds rely on motion cues for
spatial vision. These animals were shown to actively shape their
visual input by a saccadic flight and gaze strategy that ensures
translatory self-motion for most of the flight time: Flight and gaze
direction is changed by extremely rapid saccadic turns lasting for
less than 20% of flight time; between saccades the gaze is largely
kept straight (Schilstra and van Hateren, 1999; van Hateren and

Schilstra, 1999; Tammero and Dickinson, 2002; Eckmeier et al.,
2008; Mronz and Lehmann, 2008; Boeddeker et al., 2010; Braun
et al., 2010, 2012; Geurten et al., 2010; Kern et al., 2012). This
peculiar flight and gaze strategy has been interpreted as a means
to facilitate extracting spatial information from the image flow on
the eyes during translatory intersaccadic motion (Egelhaaf et al.,
2012). In accordance with this view, motion sensitive neurons in
the visual system of flies as well as of zebra finches were found
to represent information about the spatial structure of the envi-
ronment when stimulated with the retinal image flow that had
previously been experienced by free-flying animals. These motion
sensitive neurons as well as experimentally validated models of
them were found to respond stronger to nearby environmental
structures than to more distant ones because the former induced
larger retinal velocities (Boeddeker et al., 2005; Kern et al., 2005,
2006; Lindemann et al., 2005; Karmeier et al., 2006; Hennig and
Egelhaaf, 2012; Liang et al., 2012; Eckmeier et al., 2013). However,
the responses of these motion sensitive neurons are not only
affected by retinal velocity, but also reflect the textural properties
of moving stimuli, such as their contrast and spatial frequency
content (Egelhaaf and Borst, 1993; Straw et al., 2008; Meyer et al.,
2011; Hennig and Egelhaaf, 2012). This characteristic feature has
often irritated researchers because from the perspective of velocity
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coding the pattern-dependent response modulations may just
reflect a kind of “pattern noise” that deteriorates the quality of
the neural representation of pattern velocity (Dror et al., 2001;
Rajesh et al., 2005; O’Carroll et al., 2011). Alternatively, how-
ever, these pattern-dependent modulations have recently been
advocated to be functionally relevant, as they may reflect poten-
tially important information about the surroundings (Egelhaaf
et al., 2012). These somewhat contradictory conclusions have
been the starting point of the present study. Based on a novel
approach, it will integrate both views into a common conceptual
framework.

Rather than reconstructing what an animal has seen during
behavioral sequences in flight cages and probing motion sensi-
tive neurons or their models with the resulting image sequences,
we recorded image sequences in a variety of cluttered natural
environments comprising a wide range of spatial, textural, and
brightness conditions by moving a high-dynamic range camera
on idealized naturalistic trajectories and systematically analyzed
by model simulation how spatial information may be repre-
sented by the visual motion pathway. How motion information
is encoded by fly motion sensitive wide-field neurons has already
been analyzed under outdoor conditions. For methodological
reasons, these studies could only address the neural responses
to rotational displacements of the animal (Egelhaaf et al., 2001;
Lewen et al., 2001; Nemenman et al., 2008). Therefore, they had to
focus on how reliably self-rotations are represented by the visual
motion pathway, but could not address how spatial information
is represented. Addressing this issue requires translational self-
motion which cannot easily be realized in electrophysiological
experiments under outdoor conditions. Therefore, we resorted to
model simulations. Moreover, instead of scrutinizing the activity
of wide-field neurons, we analyzed the spatio-temporal activity
profile of the retinotopic array of elementary motion detectors
(EMDs). EMDs subserve the entire visual field by performing
local motion measurements before being spatially pooled by
the dendrites of wide-field neurons. The model of the motion
vision pathway was experimentally validated to a large extent in
advance: it can account for the time-dependent output of the fly’s
visual motion pathway, even under complex behaviorally relevant
stimulus conditions (Borst et al., 2003; Lindemann et al., 2005;
Shoemaker et al., 2005; Hennig et al., 2011). We will systemati-
cally analyze how the activity profile of EMD arrays relates to a
variety of features by which natural three-dimensional environ-
ments are characterized, such as their local contrast and depth
profile.

The key finding of this analysis is that during translatory self-
motion, as is characteristic of intersaccadic intervals of insect
flight, the motion detection system responds best to the con-
trast contours of nearby objects in the environment. Hence, both
aspects of motion signals, i.e., information about the velocity and
texture of environmental structures, are combined in a function-
ally meaningful way. Although our approach is largely motivated
by what we know about visually guided spatial behavior in insects
and the underlying mechanism of optic flow computation, the
results may generalize to other biological systems as well and may
also find an application in technical systems, especially in case of
highly efficient and parsimonious computations being an issue.

MATERIALS AND METHODS
This study is based on a model of the visual motion pathway of the
fly and its responses to visual motion sequences as experienced
during sequences of translatory self-motion and rapid saccade-
like rotations in natural environments with a wide range of depth
structures. We analyzed the time-dependent response profiles at
different processing stages of the motion pathway and related
the output of the array of local motion detectors to a variety of
features by which natural three-dimensional sceneries are charac-
terized, such as the local contrast or the nearness to objects. We
recorded 37 image sequences in a wide range of different types of
natural environments. The latter comprised diverse natural sur-
roundings like cluttered forests, open fields, or shrub land. The
recorded image sequences (black box at top of Figure 1) were, on
the one hand, used as input to the model of the visual motion
pathway (green boxes on the left of Figure 1) and, on the other
hand, to extract depth information about the natural environ-
ments by computer vision algorithms (red boxes on the right
of Figure 1). The depth information determined in this way was
used for comparison with the output of the biologically inspired
model (blue boxes at bottom of Figure 1).

GENERATION OF IMAGE SEQUENCES
For creating the source image sequences (black box at top
of Figure 1) we used the same image database as in a paral-
lel study (Schwegmann et al., submitted manuscript). Images
were obtained with a high dynamic range (HDR) cam-
era (PhotonFocus MV1-D1312-40-GB-12). The camera was
equipped with a panoramic hyperboloidal mirror (Accowle
Vision HMN-X15). It had an effective usable resolution with our
mirror of 928 × 928 pixels and 12-bit A/D resolution. The result-
ing image values had a high dynamic range of 1:23,900 sampled in
3,955 intensity steps where the intensity resolution was finer for
smaller intensities. To mimic the spectral sensitivity of the flies’
photoreceptors R1-R6, that provide the main input of the insect
motion vision system (Stavenga, 2002), we limited the camera’s
spectral sensitivity to wavelengths in the range of 480–550 nm by
using a dichroic filter. As a consequence of this filtering and the
careful calibration of the CMOS chip of the camera, we could use
the linearized digital return values of the camera pixels which are,
though being arbitrary units, proportional to light intensity in the
green spectral range.

The camera pointed upwards in the direction of the hyper-
boloidal mirror (Figure 2). Thus, the final image covered the
full 360◦ azimuth and an elevation ranging from −58◦ below
to 47◦ above the horizon. In this way, we could capture large
parts of the panoramic visual field of an insect with one exposure.
Though image resolution drops for patches looking downwards,
resolution is still above the resolution of the fly’s eye in the
entire field of view. To calibrate the mirror geometry for the
inverse projection of the image we used a slightly modified version
of the omnicam-calibration toolbox by Davide Scaramuzza for
MATLAB (MathWorks; version 2010b). The camera was mounted
on a custom-made linear feed equipped with a stepper motor
and placed 0.5 m above the ground (Figure 2). Camera height
was chosen for pragmatic reasons, but was biologically plausible.
We recorded images in sequences of 10 mm position steps on a
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FIGURE 1 | Flow chart of the model of the fly visual motion pathway

(green boxes) and the computations used to obtain information about

the environment, such as local contrast, nearness and the

contrast-weighted nearness (red boxes). The model and the computations
of environmental information are based on image sequences obtained in

natural surroundings (black box). The output of the model of the motion
pathway is compared with the determined information about the
environment (blue boxes). Each text box indicates a processing element
described either by the name of the processing algorithm or the description
of the result of the step.

1-m-linear path. For technical reasons subsequent images were
taken at time intervals of 2 s, i.e., at a lower rate than the real
motion of an insect at a velocity of, for instance, 1 m/s. Thus, the
translational image sequences obtained in this way correspond to
those that would have been obtained during real motion only if
the visual scenery had not changed (e.g., no brightness changes
due to clouds occluding the sun or movements of leaves, etc.).
We tried to minimize the resulting artifacts by recording on calm
days. Nevertheless, the quality of the calculated nearness maps
might have been impaired by these artifacts and have led to a
slight underestimation of the correlation between environmental
and EMD response parameters (see below). Recording sites were
located in different types of natural environments, like cluttered
forests, open fields, or shrub land.

To mimic the spatial characteristics of the ommatidial lat-
tice of the blowfly eyes (Petrowitz et al., 2000) we rendered and
unwrapped the source images to an equirectangular lattice of
square pixels, with each pixel approximating a photoreceptor. The
angular distance between these photoreceptors was set to 1.25◦
and the acceptance angle �ρ of each of them to 1.64◦. To mimic
the spatial filtering of the insect eye the input was sampled by a
two-dimensional Gaussian low-pass filter F:

F(φ) = e

[
−2.77φ2

(�ρ)2

]
(1)

For each pixel we obtained longitude and latitude in the target
projection and computed a piecewise unwrapping of the origi-
nal ring image into the Lambert azimuthal equal-area projection
centered at this longitude and latitude. This type of projection
was used because it only leads to a minimal angular distortion for
small image patches and is equal-area. To remove aliasing artifacts

FIGURE 2 | High-dynamic-range (HDR) camera equipped with a

panoramic hyperboloidal mirror and mounted on a motor-driven linear

feed. The camera system could be displaced on a linear track by 1 m. The
entire system is shown in one example natural environment.

we used 9 × 9 ordered grid supersampling anti-aliasing before
calculating the Lambert patches. We determined the brightness
value of the target pixel by computing the sum of the pixel values
in the Lambert patch weighted with the values of the Gaussian
filter F (Equation 1; Figure 3).

To assess the impact of the environmental depth structure for
each image sequence additional versions were rendered in which
we eliminated the depth structure virtually. This was done by pro-
jecting the original scenery as obtained from the panoramic image
taken at the center of the translation track onto the surface of a
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FIGURE 3 | Rendering process starting with the original panoramic image

(A) and leading to the unwrapped image in fly resolution (E). The first step
was to create an empty matrix (bottom part of E), each pixel of which was then
filled via inverse projection (i). With the given viewing direction for each pixel
and the field of view given by the acceptance angle of the photoreceptors, a

corresponding sub-projection (B,C) in the Lambert Azimuthal Equal Area
projection was calculated, also via inverse projection (ii, iii) This sub-projection
was then filtered with the Gaussian low-pass filter (D) and averaged to obtain
the brightness value as input for a given photoreceptor. This value was then
written into the corresponding pixel of the matrix (iv) (E).

sphere. Then we virtually moved the camera within this sphere
on the same track as was done before in the real environment. We
projected by ray-tracing each pixel in each frame on the sphere
and calculated the Lambert patch for this region as well as the
Gaussian filter correctly rescaled and contorted. The radius of the
sphere was set to either 1 or 5 m.

Hence, we had two image sequences for each flight, one with
the original depth structure (“full-depth image sequence”) and one
with a constant depth for all directions (“depth-equalized image
sequence”). In the latter case, the images of the sequence are opti-
cally distorted the more the camera was displaced from the center
of the sphere. Therefore, we only used the responses obtained
in the center of the sphere for comparison because the corre-
sponding images were virtually the same in depth-equalized and
full-depth version. At this point of the simulated trajectory the
only difference between the full-depth and depth-equalized image
sequence is the depth distribution.

All image sequences consisted of 100 frames taken at a dis-
tance of 10 mm from each other on a straight trajectory. We used
the panoramic images because then rotational image displace-
ments can be obtained by software. The simulated movement
trajectory started with a 180◦ yaw turn (1), then a translational
phase at 1 m/s (2) using the image sequence as input, then another

180◦ turn (3) and finally a translation backwards (4) which closes
the movement loop. Rotations were rendered according to the
dynamics of real blowfly saccades (Schilstra and van Hateren,
1999; van Hateren and Schilstra, 1999), although saccade ampli-
tudes of 180◦ are beyond the naturalistic range. The same move-
ment trajectory was used for determining the depth-equalized
image sequences.

Since we took images only at distances of 10 mm, we did a ten-
fold temporal image interpolation from 100 Hz up to 1 kHz to
simulate flight speeds of 1 m/s. We employed a piecewise cubic her-
mite spline interpolation for every individual pixel over time. This
interpolation seemed to be best suited for this purpose because it
is shape-preserving and, therefore, created no overshoots or non-
natural sudden or rough intensity changes. After interpolation,
all sequences consisted of 2128 frames at a temporal resolution
of 1 ms.

MODELING OF VISUAL MOTION PATHWAY
The model of the visual motion pathway consisted of a sequence
of processing steps (green boxes in the flow chart on the left
of Figure 1). The motion detector input was non-linearly trans-
formed and temporally filtered to approximate the transfer prop-
erties of the peripheral visual system. The non-linear response
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characteristic of photoreceptors was approximated by Lipetz
(1979) or Naka and Rushton (1966) transformation of light
intensity I:

U = Iα

Iα + Iα
0

(2)

with α being set to 0.7 (Shoemaker et al., 2005), and I0 being
the light intensity corresponding to the mid-response level of the
input individually. I0 corresponds to the average light intensity of
each image frame. Since the average brightness values of subse-
quent images changed only little, I0 changed only slowly and to
a small extent along the motion track in a given environment. I0

varied much more between different sceneries. The changes in I0

can be interpreted as a kind of crude global adaptation process to
adjust the operating range of the photoreceptors to the respective
average ambient brightness conditions. After non-linear transfor-
mation the brightness signal was temporally band-pass filtered to
mimic the transfer properties of the first optical ganglion. The
transfer function was implemented as a serially aligned first-order
low-pass filter (τL = 8 ms) and a high-pass filter (τH = 20 ms).

Elementary motion detection was based on two retinotopic
arrays of a basic version of correlation-type EMDs (Figure 4).
One array consisted of horizontally aligned EMDs, the other of
vertically aligned ones. Individual EMDs were implemented by
a multiplication of the delayed signal of a receptive input unit
with the undelayed signal of a neighboring unit. Only interactions
between direct neighbors were taken into account, for both hor-
izontally and vertically aligned EMDs. The delay operator τlp in
each half-detector was modeled by a temporal first-order low-pass
filter with a time constant of τlp = 40 ms (Shoemaker et al., 2005;
Meyer et al., 2011). Each EMD consisted of two mirror-symmetric
subunits with opposite preferred directions. Their outputs were
subtracted from each other.

For comparison with environmental features (see below) the
motion energy was determined for each retinotopic unit by taking
the length of the motion vector given by the combination of the
responses of a pair of the horizontal hEMD and the vertical vEMD
at a given location (x,y) of the visual field:

absEMD(x,y) =
√

vEMD2
(x,y) + hEMD2

(x,y) (3)

The array of the absolute values of these local motion vectors
provided the spatial motion energy profile.

ESTIMATION OF DEPTH STRUCTURE AND LOCAL CONTRAST OF
NATURAL ENVIRONMENTS
For comparison with the motion energy profile of the arrays of
EMDs we determined both local nearness maps and local contrast
maps for each image sequence (red boxes in the flow chart on the
right of Figure 1).

We computed nearness maps for the analyzed image sequences
by using motion parallax cues determined by the Lucas-Kanade
algorithm (Lucas and Kanade, 1981). We did the analysis at a res-
olution of 927 × 251 pixels of equirectangular projections of the
original high-resolution images. The images were spatially and

FIGURE 4 | EMD variant used as core element of the model of the

visual motion pathway. Three neighboring EMDs out of a larger array are
shown; one individual EMD is highlighted in black. The receptors include
the spatial filter characteristics of the ommatidial lattice of the blowfly eye
and the Naka-Rushton transformation of the input signal. Additionally, a
peripheral band-pass filter was included to mimic signal transformation
performed by lamina monopolar cells. The temporal delay in one branch of
each EMD was implemented as a low-pass filter. After having taken the
difference between the two mirror-symmetric subunits of an EMD, we
applied a full-wave rectifier, since we used the absolute motion signal for
correlation with the various image parameters. The summation and the
dotted input line at this level indicate the summation of the orthogonally
oriented EMDs—horizontal and vertical—resulting in the absolute
direction-independent motion energy. Shown elements correspond to the
green boxes displayed in Figure 1.

temporally smoothed with a Gaussian window using the Lucas-
Kanade implementation of the Simulink computer vision system
blockset of Matlab. Smoothing was done over 5 subsequent origi-
nal frames with 0.2 pixels as standard deviation of the spatial filter,
1.5 image frames as standard deviation of the temporal filter and
τ = 0.0039 as noise threshold for the calculated eigenvalues (λ).

When applied to the filtered image sequence, the Lucas-
Kanade algorithm provided the optic flow amplitude at each
image location (Figure 5A). Since these flow vectors were con-
taminated with many false directions, they were constrained in
their direction by the geometrically correct movement direction:
Assuming a stationary scene (Figure 5E) and given the constant
displacement between the images, the geometrically correct flow
direction could be calculated by the optic flow equation that
computes the optical flow vector for a given viewing direction
and direction of self-motion (Figure 5B) (Koenderink and van
Doorn, 1987). The flow vectors obtained by the Lucas-Kanade
method were then projected onto these geometrically correct
optic flow vectors. On this basis, the angular displacement due
to motion parallax was used to calculate the distance to objects
in the environment by triangulation. The resulting depth map for
the example is displayed in Figure 5C. Despite all these measures,
some noise in the nearness measurements was still obvious (see,
for instance, variations of nearness values within the boundaries
of the large trees in Figure 5D). Thus, we might have underes-
timated the correlation values with the motion energy profile to
some extent (see below).

Moreover, the depth estimation obtained in this way is affected
by a systematic error. This error was determined by applying the
described method to a movie generated by computer graphics
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FIGURE 5 | Steps of determining a nearness map. (A) Optic flow
amplitude determined by way of the Lucas-Kanade algorithm (color code in
arbitr. units), (B) optic flow directions calculated with the help of a Koenderink
algorithm, (C) depth map (color code in cm). (D) nearness map with
corrected depth (color code in cm−1), (E) original image frame (arbitr. units),
(F) correction of systematic quadratic error in depth calculation with a

comparison of two different measured depth profiles, one measured in the
right sideward direction (cyan line) and in the leftwards direction (magenta
line), the mathematically correct depth of the environment (black line) and the
measured depth after application of the mathematical correction (red and
green) were obtained by comparing the measured depths with the correct
depth.

where every distance to objects in the environment was known
(Figure 5F). The error can be minimized by using a calibration
obtained by comparing the measured depths (Figure 5F: mea-
sured depth 1 and 2) with the known depth structure of the
virtual environment (Figure 5F: black line). On this basis, the
depth D originally determined can be corrected by

Dc = −
(

p2

2p1

)
+

√(
p2

2p1

)2

+ D

p1
(4)

with correction parameters p1 = 2.778 · 10−3 and p2 = 0.456
[measured depth 1 and 2 after correction (4): Figure 5F: cor-
rected depth 1 and 2 respectively]. The corrected depth map
was smoothed by a 3 pixels x 3 pixels median filter to reduce
noise and discard pixels where the distance could not be deter-
mined. The smoothed image was down-sampled by applying
a 10 × 10 ordered grid anti-aliasing supersampling to the res-
olution of the photoreceptor lattice. Then, the same Gaussian
window (Equation 1), as employed for generating the input image
sequence of the motion detection model, was used. This was done
to ensure the same visual geometry of the depth map, as used for
the EMDs.

To compare the depth structure of the environment with the
response profile of the array of EMD pairs we determined the

nearness (N) of objects by taking the reciprocal of the corrected
depth for each pixel

Nxy = 1

Dcxy

(5)

The local contrast was calculated as the root mean square (r.m.s.)
contrast between each pixel of the image down-sampled to
ommatidial resolution, and its eight direct orthogonal and diag-
onal neighbors. The r.m.s. contrast was calculated by taking the
standard deviation of the brightness I(x, y) of all pixels (x,y) of
the local region divided by the mean brightness I of the same
region (van Der Schaaf and van Hateren, 1996; Brinkworth et al.,
2009).

RESULTS
To investigate what information about the spatial layout of natural
environments is represented by the visual motion pathway and,
in particular, at its output level we simulated model responses
to image sequences obtained on straight tracks in 37 different
outdoor environments. We will show a sample image sequence
at a given instant of time for the transformations of the visual
input along the motion pathway to motivate what aspects of these
transformations will be addressed quantitatively for all image
sequences.
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REPRESENTATION OF MOTION IN NATURAL SCENERIES BY THE
VISUAL MOTION PATHWAY
The example image sequence obtained in a forest environment
(Figure 6A) is transformed in a specific way along the different
processing stages of the visual motion pathway. This is shown
in Figure 6 for the central section of a translation sequence. The
time shift of 22 ms caused by the temporal filters of the motion
pathway was compensated here and in all subsequent analyses.

It was already at the level of the temporally band-pass fil-
tered activity distribution at the output of the peripheral visual
system that mainly the edges of the nearby trees led to positive
or negative responses depending on the polarity of brightness
change at a given location in the visual field as a consequence of
motion. In contrast, the distant parts of the scenery lead to only
small responses (Figure 6B). This distance effect was even more
obvious in the motion energy profile obtained from the com-
bined output of the arrays of horizontally and vertically aligned
EMDs (Figure 6C): Distant background objects, moving slowly
on the eyes, create only small or no responses, while near objects
are moving at larger velocities and, thus, elicit strong responses.
However, these large responses are primarily restricted to the
object boundaries.

In case of the depth structure being equalized, all contrast
edges irrespective of their nearness lead to visible responses at
both the band-pass filter level and especially at the motion detec-
tor output. Without a differentiated depth structure all edges in a
scenery move at the same angular velocity across the visual field.
Thus the background contours move at a much higher velocity
than during translation through the corresponding environment
with a pronounced depth structure. In the chosen example, the
strongest responses to the depth-equalized image sequence are
found in the background as a consequence of high-contrast edges

being present there (Figure 7, left panels). This is also true when
rotating the entire scenery with a velocity profile resembling a
saccadic turn of a fly. Then motion blur emerges as a conse-
quence of the extremely large retinal velocities (Figure 7, right
panels).

What stimulus features of the environment are reflected by
these characteristic responses, especially at the output of the
motion detection system? Since the retinal velocities induced by
objects in the environment during translatory motion increase
with increasing nearness, a close correlation between the motion
energy profile and the nearness map might be expected. However,
at first glance both maps differ to some extent. While, for exam-
ple, in the nearness map (Figure 6D) the entire nearby trees
(apart from noise) are leading to large values, the edges of the
trees, i.e., regions with a high contrast, mainly lead to strong
motion detector responses. Comparing the motion energy pro-
file with the contrast map (Figure 6E) reveals that, although high
contrasts are most obvious at object edges, not all regions with
high contrasts elicit strong motion responses in the forest envi-
ronment with its natural depth structure. These results suggest
that objects generate strong EMD responses if they (i) are close
enough to the observer to elicit large parallax movement and
(ii) have a high contrast against their background. Therefore,
we determined the contrast-weighted nearness map (Figure 6F).
Visual inspection reveals that this map appears to be very similar
to the motion energy profile (compare Figures 6C,F).

The hypothesis that the activity profile at the output of arrays
of EMDs represents the contrast-weighted nearness or, in other
words, the contrast borders of near objects was tested quantita-
tively for all motion sequences. Plotting the motion energy vs. the
contrast-weighted nearness on a double-logarithmic scale reveals
a roughly linear relationship between both parameters for the

FIGURE 6 | Spatially resolved responses along the visual motion

pathway at one instant of translatory motion through a forest (A–C) and

spatial map of three image parameters (D–F). (A) Original input image
(after Naka-Rushton non-linearity; color code in arbitr. units), (B) response
profile after the temporal band-pass filter in the periphery of the motion

pathway (color code arbitr. units), (C) motion energy profile obtained from the
absolute values of horizontally and vertically aligned EMDs (color code arbitr.
units), (D) nearness map (color code in cm−1), (E) local contrast map (color
code, local rms contrast), (F) contrast-weighted nearness map (color code in
arbitr. units).
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FIGURE 7 | Spatially resolved responses along the visual motion

pathway at one instant of translatory motion after the depth structure

of the forest environment being equalized (A–C) and of rotatory motion

with a saccade-like velocity profile. (A) Original input image frame
(gray-level code indicating brightness in arbitr. units), (B) response activity
after the temporal band-pass filter (color code in arbitr. units), (C) motion
energy profile obtained from the absolute values of horizontally and vertically

aligned EMDs (color code in arbitr. units), (D) original input image with an
arrow indicating the direction of rotation frame (gray-level code indicating
brightness in arbitr. units), (E) response activity after the temporal band-pass
filter—note the different scaling of the color axis in (B,E) to cope with the
much higher response level during rotations (color code in arbitr., but same
units as in B), (F) motion energy profile for the rotational movement (color
code in arbitr., but the same units as in C).

individual forest example mentioned above (Figure 8A) and, on
average, for all analyzed natural sceneries (Figure 8B). The slope
of this relationship is shallower and, thus, the correlation val-
ues are smaller, though still significant, for the depth-equalized
motion sequences. This is because there is no depth information,
but only contrast left to correlate with (Figure 8E). To quan-
tify these relationships we correlated both parameters at retinal
resolution. The correlation between the motion energy profiles
and the contrast-weighted nearness maps are much higher for
the full-depth than for the depth-equalized image sequences and,
especially, for saccade-like rotations (Figure 8C). Moreover, the
correlation values are considerably higher than those obtained
by correlating the motion energy with either the nearness or the
contrast alone (data not shown). The correlation between the
motion energy profile and the contrast-weighted nearness reaches
a R2 value of up to 0.7 for some sceneries, whereas the mean
value amounts to 0.41 (standard deviation of ± 0.14) reflecting
a large scatter between different natural sceneries. This scatter
can partly be explained by the large noise in the depth maps,
but mainly by the specific properties of the individual scener-
ies. For instance, image sequences without nearby objects, but a
nearby ground consisting of sand with a very low contrast only
lead to small EMD responses. In this case, the correlation is small
as a consequence of the low signal-to-noise ratio of the nearness
estimates.

For translatory motion through the example forest scene with
depth structure the R2 correlation value fluctuates over time
around a kind of plateau level. During saccade-like rotations
R2 completely drops toward zero. After the onset of transla-
tory motion, it takes some time for the correlation value to
reach its final intersaccadic level after the onset of translatory

movement (Figure 8D). Similar time courses were found for the
other full-depth motion sequences.

In conclusion, the EMD responses to translatory motion in
natural scenes with a clear depth structure depend on the com-
bination of nearness and contrast. This means that the EMDs
respond best to the contrast borders of nearby objects. In cases
where the nearness is virtually constant, the EMD response essen-
tially depends on local contrast. For being precise, it still depends
on nearness because global nearness determines the retinal image
velocity for a given translation velocity. As a consequence, smaller
global distances result in larger overall responses of the EMDs
(data not shown). However, since the nearness is constant for all
directions, it does not affect the point-to-point correlation.

THE ROLE OF THE AREAS AROUND THE FOCI OF EXPANSION AND
CONTRACTION OF OPTIC FLOW FIELDS
The focus of expansion (FOE) and the focus of contraction
(FOC) are singularities in the translatory optic flow field where
depth cannot be extracted because at these locations there is no
retinal image flow. Moreover, since the small retinal velocities
close to these singularities might be more affected by noise than
the larger velocities in other parts of the visual field, they are
likely to reduce the correlation values between motion energy
and contrast-weighted nearness. Therefore, we correlated both
parameters after excluding the FOE, the FOC, and regions of vari-
able size around these singularities. Moreover, in complementary
tests, we kept only those regions around the singular points for
correlation.

Removing the FOE and the FOC as well as the surround-
ing areas does not increase the correlation at all (Figure 9A).
On the other hand, with only taking the singularities and the
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FIGURE 8 | (A) Relation between motion energy and the contrast-weighted
nearness plotted in a double logarithmic way for the center of the track of the
forest scenery shown in Figure 5. (B) Relation between motion energy and
the contrast-weighted nearness for all full-depth motion sequences of our
data base. (C) Distribution of correlation values at the center of the tracks is
shown by the boxplots for the different stimulus conditions (full-depth movie,
depth-equalized movie obtained in two spheres with radius r = 100 cm or
r = 500 cm, and rotation). Boxes indicate the 25th, median (red center line)

and 75th percentiles. Whiskers show the minimum and maximum values
disregarding the outliers. Asterisks indicate significant differences (p <<

0.001, paired T -test with Bonferroni correction (n = 74 per box). (D) The time
course of the correlation value for entire full-depth movement sequence
(green line). Blue vertical lines mark the beginning and the end of a saccade.
The red dots mark the center of the translation sequence. (E) Relation
between motion energy and the contrast-weighted nearness for all
depth-equalized motion sequences of our data base.

circumjacent area into account and decreasing the size of this area,
the correlation values started to decrease at a radius around the
foci smaller than 40◦ (Figure 9B).

THE ROLE OF SPATIAL POOLING
What are the consequences of spatial pooling on the corre-
lation of motion energy and contrast-weighted nearness? We
expected some increase with spatial pooling because we observed,
for instance at the edges of trees, small shifts between pix-
els with large contrast-weighted nearness values and the corre-
sponding pixels of high activity in the motion energy profile
(Figure 10A). Therefore, spatial pooling might be an easy way
to raise the correlation between motion energy and contrast-
weighted nearness and, thus, the reliability of local spatial infor-
mation. However, this might be possible only at the expense of
resolution and localizability of the available information. The
effect of pooling was analyzed by convolving the data matrix with
a square, uniformly-weighted filter of a size given by the pool-
ing range before computing the correlation (for examples, see
Figure 10B).

Spatial pooling over a small range already increases the reliabil-
ity of the local contrast-weighted nearness information to a great
extent (Figure 10C, bold red line). However, spatial pooling over
a range larger than approximately 10◦ does not further increase
the correlation between motion energy and contrast-weighted

nearness. For this analysis we computed pooling for both the
motion energy profile and the contrast-weighted nearness map.

To increase reliability spatial pooling over the direct and sec-
ond neighbors is already effective. A further increase of the
pooling size raises the correlation of the motion energy with
contrast-weighted nearness only very slightly. Instead, localizabil-
ity of the information decreases (Figure 10B, bold blue line). This
was determined by keeping the contrast-weighted nearness infor-
mation at high resolution (Figure 10C, top right image), while
the motion energy profile was pooled in the same way as before.
Then, the reduction of localizability is reflected in a decrease in
correlation. We found an optimal pooling size of 3.75◦, which cor-
responds to the receptive unit and its nearest neighbors. For larger
pooling ranges the correlation indicating localizability decreases.

DISCUSSION
To navigate through cluttered environments an animal has to
extract information about the spatial structure of its immedi-
ate surroundings. In fast-flying insects, motion parallax, i.e., the
relative motion of objects on the eyes induced during transla-
tory self-motion, can be assumed to be the main source of depth
information. Motion parallax cues depend on the distance of
environmental objects to the eyes and, thus, provide depth infor-
mation. Veridical depth information can only be obtained in this
way if the local retinal velocities in the respective regions of the
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FIGURE 9 | (A) Consequences of removing the foci of expansion (FOE) and
contraction (FOC) for the mean correlation (solid line) and its standard
deviation (dashed line) between the motion energy profile and the
contrast-weighted nearness map as a function of the radius of the cropped

region centered at the FOE and FOC. (B) Consequences of keeping only the
FOE and FOC for the mean correlation (solid line) and its standard deviation
(dashed line) as function of the radius of the region centered at the FOE and
FOC.

visual field can be extracted from the retinal motion patterns.
This, however, is by far no trivial task both for biological and
technical systems.

Much is known about the mechanisms of motion detection
in insects and especially in flies at the level of neural circuits
due to great methodological advances during recent years, (e.g.,
Borst, 2009; Reiff et al., 2010; Maisak et al., 2013; Silies et al.,
2013; Takemura et al., 2013; Hopp et al., 2014; Mauss et al., 2014;
Meier et al., 2014; Strother et al., 2014). The overall performance
of these circuits can be lumped together and has been explained
for long by a computational model of local motion detection,
the correlation-type elementary motion detector (EMD), which
also formed the basis of our study (Reichardt, 1961; Borst and
Egelhaaf, 1989, 1993; Egelhaaf and Borst, 1993). Based on this
model, the time course of the responses of fly motion sensitive
neurons can be well described, even for the dynamically com-
plex stimulus conditions that are encountered during free-flight
sequences (Lindemann et al., 2005; Hennig et al., 2011; Hennig
and Egelhaaf, 2012).

Despite the detailed knowledge at the cellular and computa-
tional level, the functional significance of the information pro-
vided by these movement detectors has not been clear yet. This
statement may sound surprising, given the conventional wisdom
that motion detectors should represent velocity information as
veridically as possible. However, it is known for long that the per-
formance of the insect motion detection system systematically
deviates from this expectation. Although EMDs exploit the dif-
ferent speeds of objects and, thus, may also obtain information
about the depth structure of the environment, they are also sensi-
tive to textural features of the environment (review: (Egelhaaf and
Borst, 1993): Their responses increase—within a certain range—
with contrast and are most sensitive to spatial frequencies in an
intermediate range, but do not respond much to the low frequen-
cies that are most prevalent in natural sceneries (Meyer et al.,
submitted manuscript).

Although this pattern dependence of EMD responses has often
been concluded to be a kind of “pattern noise” of a somehow
deficient biological motion detection mechanism (Dror et al.,
2001; Rajesh, 2005; O’Carroll et al., 2011), we conclude that this
pattern dependence may make sense from a functional perspec-
tive at least during translatory self-motion in cluttered natural
environments. Several previous studies already probed the insect
motion vision system with natural sceneries. This was done either
in electrophysiological experiments under outdoor conditions,
while the entire preparation was rotated around its yaw axis
(Egelhaaf et al., 2001; Lewen et al., 2001; Nemenman et al.,
2008) or in electrophysiological studies under lab conditions
and by model analyses while presenting moving natural images
(Straw et al., 2008; Wiederman et al., 2008; Brinkworth et al.,
2009; Barnett et al., 2010; Meyer et al., 2011; O’Carroll et al.,
2011; see however, Boeddeker et al., 2005). However, almost all
of these studies only employed motion sequences that did not
contain any depth information and, thus, differed tremendously
from what an animal experiences when flying around in natural
environments. In contrast, we systematically employed stimulus
sequences that contained the natural depth information of a large
number of cluttered environments and compared the resulting
activity profiles of arrays of EMDs with those obtained with stim-
ulus sequences where the depth structure of the environment was
removed. In this way we could show that EMD arrays do not
respond best to the retinal velocity and, thus, to the nearness
of environmental structures per se, but to the contrast-weighted
nearness, or in other words, to the nearness of high-contrast
contours of objects. This conclusion holds true as long as the
translational velocity varies only little and, thus, does not induce
time-dependent response changes just as a consequence of the
changes of self-motion. This condition is met to a large extent
during individual intersaccadic intervals of insects (Schilstra and
van Hateren, 1999; van Hateren and Schilstra, 1999; Kern et al.,
2012). Our model deviates from the response properties of the
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FIGURE 10 | Consequences of spatial pooling. (A) Close-up of a small area
of the motion energy profile (left) and the corresponding contrast-weighted
nearness map (right) to illustrate differences in detail. (B) Mean correlation
(solid lines) and standard deviations (dashed lines) as a function of pooling
range. Red lines: Correlation of the pooled motion energy profile with the
pooled nearness map. Blue line: Correlation of the pooled motion energy

profile with local non-pooled nearness map, indicating the reduction of
localizability with increasing pooling range. (C) Examples of motion energy
map (left) and contrast-weighted nearness map (right) for different pooling
ranges, ranging from no pooling in the upper row over small-range pooling of
3.75◦ in the middle row to a pooling range of 10◦ in the bottom row. c.w.,
contrast weighted.

insect motion detection pathway for high contrast values. In this
case, the responses of the neuronal counterparts of our model
EMDs saturate and, thereby, depend less strongly on contrast.
This effect may reduce the correlation of the motion responses
with contrast- weighted nearness and increase the correlation
with nearness alone. However, we expect this to be only a quanti-
tative effect. From a qualitative point of view, the motion energy
computed by insect motion detection will represent contrast as
well as nearness, and thus the contours of nearby objects, even in
a high-contrast regime.

Another feature of EMDs may interfere with their ability to
convey spatial information. The responses of EMDs increase
with velocity only in a limited velocity range, beyond which
they decrease again (Egelhaaf and Borst, 1993). Hence, rela-
tively unambiguous nearness information can only be provided
as long as the response amplitude depends monotonically on
retinal velocity. At least flying insects, such as bees, flies and
moths, appear to deal with this characteristic of EMDs by a behav-
ioral strategy: By adjusting their flight speed, these animals keep
the optic flow on their eyes in a range in which the responses
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increase monotonically with increasing velocity and decrease with
decreasing velocity. Accordingly, the animals decelerate when
the translational optic flow increases, for instance, while pass-
ing a narrow gap or flying in a narrow tunnel (Srinivasan and
Zhang, 2004; Srinivasan, 2011; Egelhaaf et al., 2012). This strat-
egy, however, implies that a given range of optic flow amplitudes
corresponds to different nearness ranges, depending on flight
speed. In other words, the spatial range that can be encoded in the
monotonic range of the motion detection system scales with loco-
motion velocity. Under spatially constrained conditions in which
flies were observed to fly at translational velocities of only slightly
more than 0.5 m per second, the spatial range within which sig-
nificant distance dependent intersaccadic responses are evoked
amounts to approximately two meters (Kern et al., 2012; Liang
et al., 2012). From an ecological point of view, this scaling of the
spatial range with flight speed is economical and efficient: A fast
moving animal should initiate, for instance, a collision avoidance
maneuver earlier and at a greater distance from an obstacle than
when moving slowly. Collision avoidance thus may be triggered
at a similar time to collision for different translation velocities.

When interpreting optic flow amplitudes during translatory
motion with respect to nearness information, the characteris-
tic geometry of optic flow needs to be taken into account. Even
when moving in the center of a sphere where the distances in
all directions are the same, the optic flow varies systematically
across the visual field: it increases from the direction of head-
ing, where it is zero, toward the lateral visual field, and then
decreases again (Koenderink, 1986). This implies that equally dis-
tant and equally contrasted objects lead to the strongest responses
when they are directly at the side. Hence, nearness information
that can be gathered from optic flow needs to be scaled accord-
ing to the retinal location relative to the direction of motion.
Such a scaling might be accomplished by appropriately weigh-
ing the spatial sensitivity of the motion detectors in the different
eye regions. However, such differential weighing is not required,
if the optic flow just within a given limited area of the visual
field is used for solving a particular behavioral task. Collision
avoidance might be such a task: Here, blowflies have been con-
cluded to employ only the optic flow in the fronto-ventral visual
field to determine the direction of an evasive turning response
(Kern et al., 2012).

After a change from a saccadic rotation to an intersaccadic
translational movement, it takes some time for the movement
detector response to reach a kind of steady-state level (see
beginning of trace in Figure 8D). This finding indicates that the
first centimeters of a translational sequence cannot be used by
the animal for a reliable estimation of environmental parameters.
Therefore, a minimal duration of translatory flight segments
of about 50–70 ms—depending on the time constants of the
motion vision system—is required for the animal to be able
to achieve reliable nearness information from the optic flow.
Indeed, intersaccades of flies tend to have durations in this range,
even in small flight arenas where saccadic direction changes need
to frequently be generated to avoid collisions with the arena wall
(Schilstra and van Hateren, 1999; van Hateren and Schilstra,
1999; Kern et al., 2012). Hence, it appears that even under such
constraints the duration of intersaccadic intervals is long enough

to allow for extracting spatial information from the optic flow
patterns on the eyes.

Spatial pooling of responses of neighboring EMDs could be
shown to considerably increase the reliability with which the
boundaries of nearby objects are represented in the motion
energy profile. Pooling of the direct and second neighbors is
already sufficient. Increasing the pooling area further does not
increase the contrast-weighted nearness information significantly,
but reduces the localizability of environmental features.

Most knowledge of the representation of motion informa-
tion in insects is based either on computational modeling or on
recordings from wide-field neurons that spatially pool the out-
puts of local motion sensitive elements across extended parts of
the visual field (Borst and Haag, 2002; Egelhaaf, 2006; Taylor
and Krapp, 2008; Borst, 2009; Borst et al., 2010; Egelhaaf et al.,
2012). Such wide-field cells are not only known in insects, but
also in other animals such as birds and mammals (e.g., Simpson,
1984; Frost et al., 1994; Duffy, 1998). Although these cells have
large, but still spatially restricted receptive fields, it is suggested
that to some extent they represent—apart from genuine motion
information—information about the environment. The spatial
range over which this information is pooled is likely to depend
on the behavioral task the respective neurons are involved in.
One obvious task of motion vision systems is to provide the ani-
mal with self-motion information, i.e., information about the
rotational and translational components of its own movements.
Self-motion information is particularly relevant for animals mov-
ing in three-dimensional space, such as flying insects and birds,
and is contained in the behaviorally generated optic flow fields.
Deviations from an intended direction and/or velocity of self-
motion are thought to be detected by the motion vision pathway
and compensated by optomotor responses. The underlying mech-
anisms that extract the relevant information from the optic flow
patterns on the eyes should ideally be independent from the tex-
tural and spatial layout of the environment and only reflect the
self-motion. Spatial integration over large parts of the visual field
enhances the specificity of the system for different types of self-
motion (Hausen, 1981, 1982; Krapp et al., 1998, 2001; Dahmen
et al., 2000; Franz and Krapp, 2000; Horstmann et al., 2000;
Karmeier et al., 2003; Franz et al., 2004) and cancels out, at
least to some extent, environmental information, such as time-
dependent modulations in the local motion responses resulting
from differences in nearness and/or texture (Meyer et al., 2011;
O’Carroll et al., 2011). Although many motion sensitive neu-
rons that are thought to provide information about rotational
self-motion have large receptive fields, their receptive fields are
spatially clearly restricted. As a consequence, these cells are far
from being ideal detectors of self-rotation, as they show clear
pattern-dependent response modulations (Meyer et al., 2011;
O’Carroll et al., 2011; Schwegmann et al., submitted manuscript).
On the other hand, the large, though spatially restricted, recep-
tive fields of these wide-field motion sensitive cells make them by
no means ideal sensors for information about the surroundings
and, in particular, its spatial layout—at least not on a fine spatial
scale. At best, these cells are able to represent the average near-
ness and/or the average pattern properties in relatively large parts
of the visual field. The time course of their output signals reflects
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environmental pattern and spatial properties during translatory
intersaccadic flight phases (Kern et al., 2005; Karmeier, 2006;
Hennig and Egelhaaf, 2012; Liang et al., 2012). It is still a con-
troversial issue whether and for what computational purpose this
information is employed in visually guided orientation behav-
ior, such as in collision avoidance (Tammero and Dickinson,
2002; Lindemann et al., 2008; Kern et al., 2012; Lindemann and
Egelhaaf, 2013).

These considerations lead us to suggest that the size of the
receptive fields of insect wide-field neurons—but potentially also
of motion sensitive neurons in other systems—represents a kind
of compromise between various demands, which makes them
suitable to play a role in a variety of computational tasks, such as
self-motion estimation, spatial navigation or collision avoidance,
although they may not be optimally tuned to any of these tasks on
their own. Combining the outputs of such “suboptimal” neurons
in different task-dependent constellations might be a more parsi-
monious strategy in terms of expenditure of neural hardware than
having a larger sample of cells that are specifically tuned to each
individual task.

In conclusion, we have shown that during translatory loco-
motion the largest responses of the motion detection system are
induced by contrast borders of nearby objects. Hence, from a
functional perspective this conclusion pertains much to the char-
acteristic flight and gaze strategy of insects (see above). Here, the
animals essentially move straight for more than 80% of flight time
and change their direction by interspersed saccadic turns of vari-
able amplitude. Since translation velocity does not change much
during intersaccadic intervals (Schilstra and van Hateren, 1999;
van Hateren and Schilstra, 1999; Boeddeker et al., 2010; Kern
et al., 2012), modulations in the output of the motion detec-
tion system reflects discontinuities in the depth structure and/or
textural properties of the environment or, in other words, the
contrast borders of nearby objects, rather than changes in the
velocity of self-motion. Thus, what has been conceived by com-
mon wisdom to be a deficiency of the insect motion detection
system may turn out to be a means that allows—in combination
with the active flight and gaze strategy—to parse the environ-
ment into near and far and, at the same time, enhance the
representation of object borders in a computationally extremely
parsimonious way.
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