2,812 research outputs found

    Self-consistent Langmuir waves in resonantly driven thermal plasmas

    Get PDF
    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly gaussian in the canonical particle action, with a slowly evolving mean and fixed variance. Self-consistency with the electrostatic potential provide the basic properties of the nonlinear distribution function including a frequency shift that agrees well with driven, electrostatic particle simulations. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)], and could form the basis of a reduced kinetic treatment of Raman backscatter in a plasma.Comment: 11 pages, 4 figures, submitted to Physics of Plasma

    The Forum: Global Challenges to Democracy?:Perspectives on Democratic Backsliding

    Get PDF
    There is a widespread perception that we are witnessing a period of democratic decline, manifesting itself in varieties of democratic backsliding such as the manipulation of elections, marginalization and repression of regime opponents and minorities, or more incremental executive aggrandizement. Yet others are more optimistic and have argued that democracy is in fact resilient, or that we are observing coinciding trends of democratic decline but also expansion. This forum highlights key issues in the debate on democracy's decline, which center on conceptual and measurement issues, agreement on the phenomenon but not its nature or severity, the importance of international factors, the emphasis we should put on political elites versus citizens, and the consequences of backsliding for global politics. Staffan I. Lindberg provides an empirical perspective on the scope and severity of democracy's decline, and argues that polarization and misinformation are important drivers for this current wave of autocratization. Susan D. Hyde highlights the detrimental consequences of reduced support for democracy by the international community, which has affected civil society organizations—important arbiters of democracy—especially severely. Challenging some of these conclusions, Irfan Nooruddin claims that any gains for democracy after the end of the Cold War were short-lived, failing to sustain democracy because of an overemphasis on elections and a disregard for structural factors. Finally, Larry M. Bartels argues that we need to look to political elites and not citizens if we want to protect democracy in the United States and elsewhere, which has important implications for how we study democracy and its challenges.<br/

    Evidence for a chemically differentiated outflow in Mrk 231

    Get PDF
    Aims: Our goal is to study the chemical composition of the outflows of active galactic nuclei and starburst galaxies. Methods: We obtained high-resolution interferometric observations of HCN and HCO+^+ J=1→0J=1\rightarrow0 and J=2→1J=2\rightarrow1 of the ultraluminous infrared galaxy Mrk~231 with the IRAM Plateau de Bure Interferometer. We also use previously published observations of HCN and HCO+^+ J=1→0J=1\rightarrow0 and J=3→2J=3\rightarrow2, and HNC J=1→0J=1\rightarrow0 in the same source. Results: In the line wings of the HCN, HCO+^+, and HNC emission, we find that these three molecular species exhibit features at distinct velocities which differ between the species. The features are not consistent with emission lines of other molecular species. Through radiative transfer modelling of the HCN and HCO+^+ outflow emission we find an average abundance ratio X(HCN)/X(HCO+)≳1000X(\mathrm{HCN})/X(\mathrm{HCO}^+)\gtrsim1000. Assuming a clumpy outflow, modelling of the HCN and HCO+^+ emission produces strongly inconsistent outflow masses. Conclusions: Both the anti-correlated outflow features of HCN and HCO+^+ and the different outflow masses calculated from the radiative transfer models of the HCN and HCO+^+ emission suggest that the outflow is chemically differentiated. The separation between HCN and HCO+^+ could be an indicator of shock fronts present in the outflow, since the HCN/HCO+^+ ratio is expected to be elevated in shocked regions. Our result shows that studies of the chemistry in large-scale galactic outflows can be used to better understand the physical properties of these outflows and their effects on the interstellar medium (ISM) in the galaxy.Comment: 12 pages, 8 figures, accepted for publication in A&

    Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons

    Full text link
    We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We show that for magnetoexcitons confined to the lowest Landau levels, the third-order four-wave-mixing (FWM) polarization is dominated by the exciton-exciton interaction effects. For repulsive interactions, we identify two regimes in the time-evolution of the optical polarization characterized by exponential and {\em power law} decay of the FWM signal. We describe these regimes by deriving an analytical solution for the memory kernel of the two-exciton wave-function in strong magnetic field. For strong exciton-exciton interactions, the decay of the FWM signal is governed by an antibound resonance with an interaction-dependent decay rate. For weak interactions, the continuum of exciton-exciton scattering states leads to a long tail of the time-integrated FWM signal for negative time delays, which is described by the product of a power law and a logarithmic factor. By combining this analytic solution with numerical calculations, we study the crossover between the exponential and non-exponential regimes as a function of magnetic field. For attractive exciton-exciton interaction, we show that the time-evolution of the FWM signal is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig

    Protein folding rates correlate with heterogeneity of folding mechanism

    Get PDF
    By observing trends in the folding kinetics of experimental 2-state proteins at their transition midpoints, and by observing trends in the barrier heights of numerous simulations of coarse grained, C-alpha model, Go proteins, we show that folding rates correlate with the degree of heterogeneity in the formation of native contacts. Statistically significant correlations are observed between folding rates and measures of heterogeneity inherent in the native topology, as well as between rates and the variance in the distribution of either experimentally measured or simulated phi-values.Comment: 11 pages, 3 figures, 1 tabl

    Ultrafast pump-probe dynamics in ZnSe-based semiconductor quantum-wells

    Full text link
    Pump-probe experiments are used as a controllable way to investigate the properties of photoexcited semiconductors, in particular, the absorption saturation. We present an experiment-theory comparison for ZnSe quantum wells, investigating the energy renormalization and bleaching of the excitonic resonances. Experiments were performed with spin-selective excitation and above-bandgap pumping. The model, based on the semiconductor Bloch equations in the screened Hartree-Fock approximation, takes various scattering processes into account phenomenologically. Comparing numerical results with available experimental data, we explain the experimental results and find that the electron spin-flip occurs on a time scale of 30 ps.Comment: 10 pages, 9 figures. Key words: nonlinear and ultrafast optics, modeling of femtosecond pump-probe experiments, electron spin-flip tim

    Spatiotemporal Response of Crystals in X-ray Bragg Diffraction

    Full text link
    The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an ultra-short, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the analysis in symmetric reflection geometry [1] to the generic case, which includes Bragg diffraction both in reflection (Bragg) and transmission (Laue) asymmetric scattering geometries. The spatiotemporal response is presented as a product of a crystal-intrinsic plane wave spatiotemporal response function and an envelope function defined by the crystal-independent transverse profile of the incident beam and the scattering geometry. The diffracted wavefields exhibit amplitude modulation perpendicular to the propagation direction due to both angular dispersion and the dispersion due to Bragg's law. The characteristic measure of the spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness, Bragg angle, asymmetry angle, and the speed of light. Applications to self-seeding of hard x-ray free electron lasers are discussed, with particular emphasis on the relative advantages of using either the Bragg or Laue scattering geometries. Intensity front inclination in asymmetric diffraction can be used to make snapshots of ultra-fast processes with femtosecond resolution

    Free induction signal from biexcitons and bound excitons

    Full text link
    A theory of the free induction signal from biexcitons and bound excitons is presented. The simultaneous existence of the exciton continuum and a bound state is shown to result in a new type of time dependence of the free induction. The optically detected signal increases in time and oscillates with increasing amplitude until damped by radiative or dephasing processes. Radiative decay is anomalously fast and can result in strong picosecond pulses. The expanding area of a coherent exciton polarization (inflating antenna), produced by the exciting pulse, is the underlying physical mechanism. The developed formalism can be applied to different biexciton transients.Comment: RevTeX, 20 p. + 2 ps fig. To appear in Phys. Rev. B1
    • …
    corecore