31 research outputs found

    Electromigration experiments for studying transport parameters and sorption of cesium and strontium on intact crystalline rock

    Get PDF
    This study aims to determine upscaling factors for the radionuclides' distribution coefficients (Kd) on crushed rocks to intact rock for the safety analysis of radionuclide migration from spent nuclear fuel in bedrock towards biosphere. Here we report the distribution coefficients for intact rock determined by electromigration sorption experiments and compare the results with those from recently performed batch sorption experiments. In total 34 rock samples, representing three typical rock types from Olkiluoto Finland, were studied in order to determine distribution coefficients, effective diffusion coefficients and porosities using the electromigration sorption experiments, formation factor experiments and porosity measurement. The parameters determined represent the three main parameters of geosphere used in the safety assessment of spent nuclear fuel disposal. The distribution coefficients of cesium and strontium on intact rock varied between (0.12–26.2) × 10−3 m3/kg and (1.4–13.3) × 10−3 m3/kg, respectively, whereas recent results for crushed rock varied between (2–57) × 10−3 m3/kg and (17–40) × 10−3 m3/kg, respectively. This implies that crushing increases the distribution coefficient significantly and upscaling factors from 3 to 33 were determined for scaling the distribution coefficients of crushed rock to ones of intact rock. The determined distribution coefficients of cesium and strontium for intact rock can be directly applied in the safety assessment whereas the upscaling factors can be used to convert distribution coefficients determined for crushed rock into ones for intact rock. Based on the results for porosities and effective diffusion coefficients it was concluded that they do not seem to correlate with sorption parameters. However, an alteration state, heterogeneity and mineral content seem to be important factors affecting the distribution coefficients and upscaling factors.Peer reviewe

    Batch sorption experiments of cesium and strontium on crushed rock and biotite for the estimation of distribution coefficients on intact crystalline rock

    Get PDF
    The distribution coefficient (Kd) of radionuclides on bedrock is one of the key parameters used in the safety analysis of spent nuclear fuel repositories. Typically, distribution coefficients have been determined using crushed rock. However, recent studies have shown that crushing of the rock increases considerably the distribution coefficient compared with the values of intact rock. This study aimed to test if batch sorption experiments using different grain sizes (i.e. mean diameter of grains) can be used to evaluate the Kd of strontium (Sr) and cesium (Cs) on intact crystalline rock, which would decrease the needed experimental time compared with transport experiments. Here we report the results of the batch sorption experiments with crushed rocks and compare the results with those from a recent study performed using electromigration experiments with intact drill core samples (Puukko et al., 2018). The batch sorption experiments were done for rock samples from Olkiluoto, Finland, as a function of grain size and of Cs and Sr concentration. Furthermore, the specific surface areas of the same rock samples with different grain sizes were determined. It was shown that Cs distribution coefficients correlate with specific surface areas of the studied rocks and biotite, the correlation coefficient being 0.95. The Cs distribution coefficient was highest for biotite at about 0.1 m3/kg at 10−4 M cesium concentration and increased systematically to about 1 m3/kg at 10−8 M. Distribution coefficients for rocks were up to about two orders of magnitude lower, being lowest with the rock with the lowest biotite content (3.3%). The distribution coefficient of Sr varied from 0.04 m3/kg to 0.007 m3/kg and behaved in a different manner: it remained constant in two out of three studied rocks in the concentration range of 10−8-10−4 M and only in the case of one rock a decreasing trend was seen at the higher concentration range. It was also shown that batch sorption experiments overestimate the distribution coefficient in respect to intact rock. The decrease of the distribution coefficient as a function of grain size can be estimated using a power law function. It was also shown that estimation of distribution coefficients of Cs and Sr for intact rock by extrapolation of distribution coefficients determined for different grain sizes is not possible without increasing grain size, but in that case diffusion into the grains would also affect the results. A new method was developed for estimating the fraction of the inner surface area of the total surface area of crushed grains. For the mean grain sizes of 0.25 mm and 0.75 mm the fraction of the inner surface was found to be 35–70% and 60–90%, respectively. The inner specific surface area was highest with biotite at 1.2 m2/g and lowest with the rock with lowest biotite content (3.3%) at 0.07 m2/g. The surface area analysis revealed that crushing creates and/or allows access to additional inner surface area that is not measured in intact rock. Furthermore, it was demonstrated that sorption of Cs on crushed rock was dominated by mica minerals in multiple concentrations while the effect of mica minerals on the Kd of Sr was not as straightforward.Peer reviewe

    Multi-site surface complexation modelling of Se(IV) sorption on biotite

    Get PDF
    A surface complexation model of Se(IV) sorption on biotite with one type of strong sorption sites and two types of weak sorption sites were developed based on experimental data obtained from titration, sorption edge and sorption isotherm experiments. Titration data was collected using a batch-wise manner together with back-titration to calibrate the effect of mineral dissolution in 0.01 M KClO4 background electrolytes from pH 3 to 11 in an inert atmosphere glovebox. Further calibrations of the titration curve include proton exchange and cation exchange in which the calculations of cation occupancies on biotite surfaces were taken into account. The sorption edge measurements were determined by measuring the sorption of 10(-9) M total Se with a radioactive Se-75 tracer on converted biotite in 0.01 M KClO4 solution from pH 3 to 11. Se sorption was observed to be strongly dependent on pH. Surface complexation modelling was performed by deriving a set of optimized parameters that can fit titration, sorption edge and sorption isotherm (at pH similar to 7.7) experimental data. A CASTEP code implemented into Materials Studio was used to calculate the site densities and site types on the biotite surfaces. Weak sorption sites with site densities of 3.2 sites/nm(2) and 1.4 sites/nm(2) were derived from the codes and used in the sorption model. A computer code that coupled PHREEQC with Python was developed for the fitting and optimizing processes. The model was validated by sorption data at pH similar to 9.5. The results show that the model can provide quantitative predicts of Se(IV) sorption in groundwater conditions of a deep geological repository and help improve the performance assessments by giving more convincing estimates of the release of radionuclides towards aquifers and biosphere.Peer reviewe

    Sorption of Se species on mineral surfaces, part I : Batch sorption and multi-site modelling

    Get PDF
    The sorption behavior of Se(IV) on Grimsel granodiorite and its main minerals, plagioclase, K-feldspar, quartz and biotite, were investigated in Grimsel groundwater simulant in a large Se concentration range (from 1.66 x 10(-10) M to 1 x 10(-3) M). Experimental results show that the distribution coefficients (K-d values) of Se (IV) on the rock and mineral samples increased with the decreasing of Se(IV) concentration. The sorption of Se (IV) on biotite has the largest K-d value in low concentration area (<10(-7) M) stabilizing between 0.0595 +/- 0.0097 m(3)/Kg and 0.0713 +/- 0.0164 m(3)/Kg. The Kd value of Se(IV) on K-feldspar was the second largest (0.0154 +/- 0.0019 m(3)/Kg in 10(-9) M) while the sorption on quartz was negligible. The sorption behavior of Se(IV) on Grimsel granodiorite followed the same trend as plagioclase, the most abundant mineral in Grimsel granodiorite, with K-d values of 0.0078 +/- 0.0010 m(3)/Kg for Grimsel granodiorite and 0.0085 +/- 0.0016 m(3)/Kg for plagioclase, when Se(IV) concentration was 10(-9) M. HPLC-ICP-MS results show that all the Se(IV) remained in + IV oxidation state after more than 1 month experimental time and speciation modelling proved that the main species in Grimsel groundwater simulant were HSeO3- and SeO32-. Multi-site surface complexation modelling was performed by PHREEQC with the help of molecular modelling techniques which was performed with the CASTEP code implemented into Materials Studio. The modelling results predict that there are three kinds of sorption sites on the surface of biotite mineral, with sorption site densities differing in three magnitudes.Peer reviewe

    Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees

    Get PDF
    Interest in measuring forest biomass and carbon stock has increased as a result of the United Nations Framework Convention on Climate Change, and sustainable planning of forest resources is therefore essential. Biomass and carbon stock estimates are based on the large area estimates of growing stock volume provided by national forest inventories (NFIs). The estimates for growing stock volume based on the NFIs depend on stem volume estimates of individual trees. Data collection for formulating stem volume and biomass models is challenging, because the amount of data required is considerable, and the fact that the detailed destructive measurements required to provide these data are laborious. Due to natural diversity, sample size for developing allometric models should be rather large. Terrestrial laser scanning (TLS) has proved to be an efficient tool for collecting information on tree stems. Therefore, we investigated how TLS data for deriving stem volume information from single trees should be collected. The broader context of the study was to determine the feasibility of replacing destructive and laborious field measurements, which have been needed for development of empirical stem volume models, with TLS. The aim of the study was to investigate the effect of the TLS data captured at various distance (i.e. corresponding 25%, 50%, 75% and 100% of tree height) on the accuracy of the stem volume derived. In addition, we examined how multiple TLS point cloud data acquired at various distances improved the results. Analysis was carried out with two ways when multiple point clouds were used: individual tree attributes were derived from separate point clouds and the volume was estimated based on these separate values (multiple scan A), and point clouds were georeferenced as a combined point cloud from which the stem volume was estimated (multiple-scan B). This permitted us to deal with the practical aspects of TLS data collection and data processing for development of stem volume equations in boreal forests. The results indicated that a scanning distance of approximately 25% of tree height would be optimal for stem volume estimation with TLS if a single scan was utilized in boreal forest conditions studied here and scanning resolution employed. Larger distances increased the uncertainty, especially when the scanning distance was greater than approximately 50% of tree height, because the number of successfully measured diameters from the TLS point cloud was not sufficient for estimating the stem volume. When two TLS point clouds were utilized, the accuracy of stem volume estimates was improved: RMSE decreased from 12.4% to 6.8%. When two point clouds were processed separately (i.e. tree attributes were derived from separate point clouds and then combined) more accurate results were obtained; smaller RMSE and relative error were achieved compared to processing point clouds together (i.e. tree attributes were derived from a combined point cloud). TLS data collection and processing for the optimal setup in this study required only one sixth of time that was necessary to obtain the field reference. These results helped to further our knowledge on TLS in estimating stem volume in boreal forests studied here and brought us one step closer in providing best practices how a phase-shift TLS can be utilized in collecting data when developing stem volume models. (C) 2016 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).Peer reviewe

    Terrestrial laser scanning in forest inventories

    Get PDF
    AbstractDecision making on forest resources relies on the precise information that is collected using inventory. There are many different kinds of forest inventory techniques that can be applied depending on the goal, scale, resources and the required accuracy. Most of the forest inventories are based on field sample. Therefore, the accuracy of the forest inventories depends on the quality and quantity of the field sample. Conventionally, field sample has been measured using simple tools. When map is required, remote sensing materials are needed. Terrestrial laser scanning (TLS) provides a measurement technique that can acquire millimeter-level of detail from the surrounding area, which allows rapid, automatic and periodical estimates of many important forest inventory attributes. It is expected that TLS will be operationally used in forest inventories as soon as the appropriate software becomes available, best practices become known and general knowledge of these findings becomes more wide spread. Meanwhile, mobile laser scanning, personal laser scanning, and image-based point clouds became capable of capturing similar terrestrial point cloud data as TLS. This paper reviews the advances of applying TLS in forest inventories, discusses its properties with reference to other related techniques and discusses the future prospects of this technique
    corecore