115 research outputs found
A High Pressure Distorted a-Uranium (Pnma) Structure in Plutonium
Under pressure many rare earths and actinide metals transform to a-U
structure or its lower symmetry distorted forms. We have reinterpreted the
diffraction data of Dabos et al for Pu (reference 4) and find that a Am IV type
distorted a-U structure in Pnma space group can explain this for its high
pressure phase. The structures of this phase and a-Pu are both shown to have a
distorted hcp topology. The upturn in the atomic volume of Pu at 0.1 MPa can
also be rationalized on the basis of this proposalComment: 10pages,3 figure
Vacancy motion in rare-earth-deficient R_(1-x)Ni_2 Laves phases observed by perturbed angular correlation spectroscopy
Rare-earth-deficient R_(1-x)Ni_2 Laves phases, which reportedly crystallize in a C15 superstructure with ordered R vacancies, have been investigated by perturbed angular correlation (PAC) measurements of electric quadrupole interactions at the site of the probe nucleus ^111Cd. Although ^111Cd resides on the cubic R site, a strong axially symmetric quadrupole interaction (QI) with frequencies ν(q)approximate to265-275 MHz has been found in the paramagnetic phases of R_(1-x)Ni_2 with R=Pr,Nd,Sm,Gd. This interaction is not observed for the heavy R constituents R=Tb,Dy,Ho,Er. The fraction of probe nuclei subject to the QI in R_(1-x)Ni_2, R=Pr,Nd,Sm,Gd, decreases from 100% at low temperatures to zero at T>300 K and 500 K for R=Sm,Gd and R=Pr,Nd, respectively. At T=100 K the QI is static within the PAC time window, but at T=200 K fluctuations with correlation times τ_(C) 500 K nuclear spin relaxation related to vacancy hopping is observed in nearly all R_(1-x)N_i2. Auxiliary ^111Cd PAC measurements have been carried in Sc_0.95Ni_2, ScNi_2, ScNi_0.97, Gd_2Ni_(17), GdNi_5, GdNi_3, and GdNi
Magnetoelastic effects in Jahn-Teller distorted CrF and CuF studied by neutron powder diffraction
We have studied the temperature dependence of crystal and magnetic structures
of the Jahn-Teller distorted transition metal difluorides CrF and CuF
by neutron powder diffraction in the temperature range 2-280 K. The lattice
parameters and the unit cell volume show magnetoelastic effects below the
N\'eel temperature. The lattice strain due to the magnetostriction effect
couples with the square of the order parameter of the antiferromagnetic phase
transition. We also investigated the temperature dependence of the Jahn-Teller
distortion which does not show any significant effect at the antiferromagnetic
phase transition but increases linearly with increasing temperature for CrF
and remains almost independent of temperature in CuF. The magnitude of
magnetovolume effect seems to increase with the low temperature saturated
magnetic moment of the transition metal ions but the correlation is not at all
perfect
Adsorption and dissociation of molecular oxygen on the (0001) surface of double hexagonal close packed americium
In our continuing attempts to understand theoretically various surface
properties such as corrosion and potential catalytic activity of actinide
surfaces in the presence of environmental gases, we report here the first ab
initio study of molecular adsorption on the double hexagonal packed (dhcp)
americium (0001) surface. Dissociative adsorption is found to be energetically
more favorable compared to molecular adsorption. The most stable configuration
corresponds to a horizontal approach molecular dissociation with the oxygen
atoms occupying neighboring h3 sites, with chemisorption energies at the NSOC
and SOC theoretical levels being 9.395 eV and 9.886 eV, respectively. The
corresponding distances of the oxygen molecule from the surface and
oxygen-oxygen distance were found to be 0.953 Ang. and 3.731 Ang.,
respectively. Overall our calculations indicate that chemisorption energies in
cases with SOC are slightly more stable than the cases with NSOC in the
0.089-0.493 eV range. The work functions and net magnetic moments respectively
increased and decreased in all cases compared with the corresponding quantities
of the bare dhcp Am (0001) surface. The adsorbate-substrate interactions have
been analyzed in detail using the partial charges inside the muffin-tin
spheres, difference charge density distributions, and the local density of
states. The effects, if any, of chemisorption on the Am 5f electron
localization-delocalization characteristics in the vicinity of the Fermi level
are also discussed.Comment: 6 tables, 10 figure
A Density Functional Study of Atomic Hydrogen and Oxygen Chemisorption on the Relaxed (0001) Surface of Double Hexagonal Close Packed Americium
Ab initio total energy calculations within the framework of density
functional theory have been performed for atomic hydrogen and oxygen
chemisorption on the (0001) surface of double hexagonal packed americium using
a full-potential all-electron linearized augmented plane wave plus local
orbitals method. Chemisorption energies were optimized with respect to the
distance of the adatom from the relaxed surface for three adsorption sites,
namely top, bridge, and hollow hcp sites, the adlayer structure corresponding
to coverage of a 0.25 monolayer in all cases. Chemisorption energies were
computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at
the fully relativistic level (with spin-orbit coupling SOC). The two-fold
bridge adsorption site was found to be the most stable site for O at both the
NSOC and SOC theoretical levels with chemisorption energies of 8.204 eV and
8.368 eV respectively, while the three-fold hollow hcp adsorption site was
found to be the most stable site for H with chemisorption energies of 3.136 eV
at the NSOC level and 3.217 eV at the SOC level. The respective distances of
the H and O adatoms from the surface were found to be 1.196 Ang. and 1.164 Ang.
Overall our calculations indicate that chemisorption energies in cases with SOC
are slightly more stable than the cases with NSOC in the 0.049-0.238 eV range.
The work functions and net magnetic moments respectively increased and
decreased in all cases compared with the corresponding quantities of bare dhcp
Am (0001) surface. The partial charges inside the muffin-tins, difference
charge density distributions, and the local density of states have been used to
analyze the Am-adatom bond interactions in detail. The implications of
chemisorption on Am 5f electron localization-delocalization are also discussed.Comment: 9 Tables, 5 figure
Probing the 5f Electrons in Am-I by Hybrid Density Functional Theory
The ground states of the actinides and their compounds continue to be matters
of considerable controversies. Experimentally, Americium-I (Am-I) is a
non-magnetic dhcp metal whereas theoretically an anti-ferromagnetic ground
state is predicted. We show that hybrid density functional theory, which
admixes a fraction of exact Hartree-Fock (HF) exchange with approximate DFT
exchange, can correctly reproduce the ground state properties of Am. In
particular, for a 0.40 fraction of HF exchange we obtain a non-magnetic ground
state with equilibrium atomic volume, bulk modulus, 5f electron population, and
the density of electronic states all in good agreement with experimental data.
We argue that the exact HF exchange corrects the overestimation of the
approximate DFT exchange interaction.Comment: 1 table, 4 figures. Chemical Physics Letters, in press (2009
On the Convergence of the Electronic Structure Properties of the FCC Americium (001) Surface
Electronic and magnetic properties of the fcc Americium (001) surface have
been investigated via full-potential all-electron density-functional electronic
structure calculations at both scalar and fully relativistic levels. Effects of
various theoretical approximations on the fcc Am (001) surface properties have
been thoroughly examined. The ground state of fcc Am (001) surface is found to
be anti-ferromagnetic with spin-orbit coupling included (AFM-SO). At the ground
state, the magnetic moment of fcc Am (001) surface is predicted to be zero. Our
current study predicts the semi-infinite surface energy and the work function
for fcc Am (001) surface at the ground state to be approximately 0.82 J/m2 and
2.93 eV respectively. In addition, the quantum size effects of surface energy
and work function on the fcc Am (001) surface have been examined up to 7 layers
at various theoretical levels. Results indicate that a three layer film surface
model may be sufficient for future atomic and molecular adsorption studies on
the fcc Am (001) surface, if the primary quantity of interest is the
chemisorption energy.Comment: 34 pages, 9 figure
Thermische Ausdehnung und spontane Magnetostriktion in intermetallischen Selten-Erd-Verbindungen
9
- …
