2,796 research outputs found
Personalisation of intelligent homecare services adapted to children with motor impairments
Ambient Intelligence could support innovative application domains like motor impairments' detection at the home environment. This research aims to prevent neurodevelopmental disorders through the natural interaction of the children with embedded intelligence daily life objects, like home furniture and toys. Designed system uses an interoperable platform to provide two intelligent interrelated home healthcare services: monitoring of children¿s abilities and completion of early stimulation activities. A set of sensors, which are embedded within the rooms, toys and furniture, allows private data gathering about the child's interaction with the environment. This information feeds a reasoning subsystem, which encloses an ontology of neurodevelopment items, and adapts the service to the age and acquisition of expected abilities. Next, the platform proposes customized stimulation services by taking advantage of the existing facilities at the child's environment. The result integrates Embedded Sensor Systems for Health at Mälardalen University with UPM Smart Home, for adapted services delivery
Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)
Besides the dedicated search for strangelets NA52 measures light
(anti)particle and (anti)nuclei production over a wide range of rapidity.
Compared to previous runs the statistics has been increased in the 1998 run by
more than one order of magnitude for negatively charged objects at different
spectrometer rigidities. Together with previous data taking at a rigidity of
-20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3
without centrality requirements. We measured nuclei and antinuclei
(p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter
range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei
are mainly produced via the coalescence mechanism. However the centrality
dependence of the antibaryon to baryon ratios show that antibaryons are
diminished due to annihilation and breakup reactions in the hadron dense
environment. The volume of the particle source extracted from coalescence
models agrees with results from pion interferometry for an expanding source.
The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide
with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference
on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept.
25-29, 200
New NCI-N87-derived human gastric epithelial line after human telomerase catalytic subunit over-expression
AIM: To establish a cellular model correctly mimicking the gastric epithelium to overcome the limitation in the study of Helicobacter pylori (H. pylori ) infection. METHODS: Aiming to overcome this limitation, clones of the heterogenic cancer-derived NCI-N87 cell line were isolated, by stably-transducing it with the human telomerase reverse-transcriptase (hTERT) catalytic subunit gene. The clones were first characterized regarding their cell growth pattern and phenotype. For that we measured the clones' adherence properties, expression of cell-cell junctions' markers (ZO-1 and E-cadherin) and ability to generate a sustained transepithelial electrical resistance. The gastric properties of the clones, concerning expression of mucins, zymogens and glycan contents, were then evaluated by haematoxylin and eosin staining, Periodic acid Schiff (PAS) and PAS/Alcian Blue-staining, immunocytochemistry and Western blot. In addition, we assessed the usefulness of the hTERT-expressing gastric cell line for H. pylori research, by performing co-culture assays and measuring the IL-8 secretion, by ELISA, upon infection with two H. pylori strains differing in virulence. RESULTS: Compared with the parental cell line, the most promising NCI-hTERT-derived clones (CL5 and CL6) were composed of cells with homogenous phenotype, presented higher relative telomerase activities, better adhesion properties, ability to be maintained in culture for longer periods after confluency, and were more efficient in PAS-reactive mucins secretion. Both clones were shown to produce high amounts of MUC1, MUC2 and MUC13. NCI-hTERT-CL5 mucins were shown to be decorated with blood group H type 2 (BG-H), Lewis-x (Lex), Ley and Lea and, in a less extent, with BG-A antigens, but the former two antigens were not detected in the NCI-hTERT-CL6. None of the clones exhibited detectable levels of MUC6 nor sialylated Lex and Lea glycans. Entailing good gastric properties, both NCIhTERT- clones were found to produce pepsinogen-5 and human gastric lipase. The progenitor-like phenotype of NCI-hTERT-CL6 cells was highlighted by large nuclei and by the apical vesicular-like distribution of mucin 5AC and Pg5, supporting the accumulation of mucus-secreting and zymogens-chief mature cells functions. CONCLUSION: These traits, in addition to resistance to microaerobic conditions and good responsiveness to H. pylori co-culture, in a strain virulence-dependent manner, make the NCI-hTERT-CL6 a promising model for future in vitro studies.info:eu-repo/semantics/publishedVersio
Europium-based high-temperature superconductors studied by x-ray diffraction and 151Eu Mössbauer spectroscopy
Isotropic powders and magnetically aligned crystallites of EuBa2Cu3O7−δ (1:2:3) and europium-doped Bi2Sr2CaCu2O8 (2:2:1:2) were studied by means of x-ray diffraction and Eu151 Mössbauer spectroscopy. The degree of crystallite orientation of the samples and the values of the lattice constants were determined by x-ray diffraction. The Mössbauer spectra were analyzed considering the full hyperfine Hamiltonian of the nuclear states of the 21.5-keV γ transition. The Mössbauer hyperfine parameters obtained from the superconducting and semiconducting phases are presented. A small change is seen in the Eu151 isomer shift when the oxygen deficiency δ of the 1:2:3 compound is varied. The shift can be explained by a decrease in the s-electron density due to lattice expansion. The changes in the oxidation state of the copper atoms with varying δ were determined from the Mössbauer data: The Cu(2) atoms retain their oxidation state, whereas the Cu(1) atoms adjust their valence according to the value of δ. In the 2:2:1:2 samples, the Eu concentration clearly affected the value of the electric-field gradient at the Eu nucleus. Using a standard procedure, magnetically aligned 2:2:1:2 samples were prepared. The preferred direction of the crystal c axis changed from parallel to perpendicular alignment with the external magnetic field, when the Eu concentration exceeded 20% of the Ca atoms.Peer reviewe
Structural and magnetic properties of MSr2Y1.5Ce0.5Cu2Oz (M-1222) compounds with M = Fe and Co
MSr2Y1.5Ce0.5Cu2Oz (M-1222) compounds, with M = Fe and Co, have been
synthesized through a solid-state reaction route. Both compounds crystallize in
a tetragonal structure (space group I4/mmm). A Rietveld structural refinement
of room-temperature neutron diffraction data for Fe-1222 reveals that nearly
half the Fe remains at the M site, while the other half goes to the Cu site in
the CuO2 planes. Existence of Fe at two different lattice sites, is also
confirmed by 57Fe Mossbauer spectroscopy from which it is inferred that nearly
50% of the total Fe occupies the Cu site in the CuO2 planes as Fe3+, whereas
the other 50 % is located at the M site with nearly 40 % as Fe4+ and around 10%
as Fe3+. For the M = Co compound, nearly 84 % of Co remains at its designated M
site, while the rest occupies the Cu site in the CuO2 planes. The oxygen
content, z, based on oxygen occupancies refined from the neutron diffraction
data, comes close to 9.0 for both the samples The ZFC and FC magnetization
curves as a function of temperature show a complex behavior for both Fe-1222
and Co-1222 compounds.Comment: MMM Inter mag Proceedings, accepted in J. Appl. Phy
Structural and Magnetic Properties of MrSr₂Y₁.₅Ce₀.₅Cu₂Oz (M-1222) Compounds with M = Fe and Co
The MSr2Y1.5Ce0.5Cu2Oz (M-1222) compounds, with M = Fe and Co, have been synthesized through a solid-state reaction route. Both compounds crystallize in a tetragonal structure (space group 14/mmm). A Rietveld structural refinement of the room-temperature neutron diffraction data for Fe-1222 reveals that nearly half the Fe remains at the M site, while the other half goes to the Cu site in the CuO2 planes. Existence of Fe at two different lattice sites is also confirmed by 57Fe Mössbauer spectroscopy from which it is inferred that ~50% of the total Fe occupies the Cu site in the CuO2 planes as Fe3+, whereas the other ~50% is located at the M site with ~40% as Fe4+ and ~10% as Fe3+. For the M[Double Bond]Co compound, nearly 84% of Co remains at its designated M site, while the rest occupies the Cu site in the CuO2 planes
Curie temperature enhancement of electron doped SrFeMoO perovskites studied by photoemission spectroscopy
We report here on the electronic structure of electron-doped half-metallic
ferromagnetic perovskites such SrLaFeMoO (=0-0.6) as
obtained from high-resolved valence-band photoemission spectroscopy (PES). By
comparing the PES spectra with band structure calculations, a distinctive peak
at the Fermi level (E) with predominantly (Fe+Mo) t
character has been evidenced for all samples, irrespectively of the values
investigated. Moreover, we show that the electron doping due to the La
substitution provides selectively delocalized carriers to the
t metallic spin channel. Consequently, a gradual rising of
the density of states at the E has been observed as a function of the La
doping. By changing the incoming photon energy we have shown that electron
doping mainly rises the density of states of Mo parentage. These findings
provide fundamental clues for understanding the origin of ferromagnetism in
these oxides and shall be of relevance for tailoring oxides having still higher
T
Electronic and Magnetic Structures of Sr2FeMoO6
We have investigated the electronic and magnetic structures of Sr2FeMoO6
employing site-specific direct probes, namely x-ray absorption spectroscopy
with linearly and circularly polarized photons. In contrast to some previous
suggestions, the results clearly establish that Fe is in the formal trivalent
state in this compound. With the help of circularly polarized light, it is
unambiguously shown that the moment at the Mo sites is below the limit of
detection (< 0.25mu_B), resolving a previous controversy. We also show that the
decrease of the observed moment in magnetization measurements from the
theoretically expected value is driven by the presence of mis-site disorder
between Fe and Mo sites.Comment: To appear in Physical Review Letter
- …