4,269 research outputs found
Constraining the properties of neutron star crusts with the transient low-mass X-ray binary Aql X-1
Aql X-1 is a prolific transient neutron star low-mass X-ray binary that
exhibits an accretion outburst approximately once every year. Whether the
thermal X-rays detected in intervening quiescent episodes are the result of
cooling of the neutron star or due to continued low-level accretion remains
unclear. In this work we use Swift data obtained after the long and bright 2011
and 2013 outbursts, as well as the short and faint 2015 outburst, to
investigate the hypothesis that cooling of the accretion-heated neutron star
crust dominates the quiescent thermal emission in Aql X-1. We demonstrate that
the X-ray light curves and measured neutron star surface temperatures are
consistent with the expectations of the crust cooling paradigm. By using a
thermal evolution code, we find that ~1.2-3.2 MeV/nucleon of shallow heat
release describes the observational data well, depending on the assumed
mass-accretion rate and temperature of the stellar core. We find no evidence
for varying strengths of this shallow heating after different outbursts, but
this could be due to limitations of the data. We argue that monitoring Aql X-1
for up to ~1 year after future outbursts can be a powerful tool to break model
degeneracies and solve open questions about the magnitude, depth and origin of
shallow heating in neutron star crusts.Comment: 14 pages, 5 figures, 3 tables, accepted to MNRA
Low-level accretion in neutron-star X-ray binaries
We search the literature for reports on the spectral properties of
neutron-star low-mass X-ray binaries when they have accretion luminosities
between 1E34 and 1E36 ergs/s. We found that in this luminosity range the photon
index (obtained from fitting a simple absorbed power-law in the 0.5-10 keV
range) increases with decreasing 0.5-10 keV X-ray luminosity (i.e., the
spectrum softens). Such behaviour has been reported before for individual
sources, but here we demonstrate that very likely most (if not all)
neutron-star systems behave in a similar manner and possibly even follow a
universal relation. When comparing the neutron-star systems with black-hole
systems, it is clear that most black-hole binaries have significantly harder
spectra at luminosities of 1E34 - 1E35 erg/s. Despite a limited number of data
points, there are indications that these spectral differences also extend to
the 1E35 - 1E36 erg/s range. This observed difference between the neutron-star
binaries and black-hole ones suggests that the spectral properties (between
0.5-10 keV) at 1E34 - 1E35 erg/s can be used to tentatively determine the
nature of the accretor in unclassified X-ray binaries. We discuss our results
in the context of properties of the accretion flow at low luminosities and we
suggest that the observed spectral differences likely arise from the
neutron-star surface becoming dominantly visible in the X-ray spectra. We also
suggest that both the thermal component and the non-thermal component might be
caused by low-level accretion onto the neutron-star surface for luminosities
below a few times 1E34 erg/s.Comment: Accepted for publication in MNRA
Type I X-ray bursts, burst oscillations and kHz quasi-periodic oscillations in the neutron star system IGR J17191-2821
We present a detailed study of the X-ray energy and power spectral properties
of the neutron star transient IGR J17191-2821. We discovered four instances of
pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs). The
frequency difference between these kHz QPOs is between 315 Hz and 362 Hz. We
also report on the detection of five thermonuclear type-I X-ray bursts and the
discovery of burst oscillations at ~294 Hz during three of them. Finally, we
report on a faint and short outburst precursor, which occurred about two months
before the main outburst. Our results on the broadband spectral and variability
properties allow us to firmly establish the atoll source nature of IGR
J17191-2821.Comment: 9 pages, 7 figures - accepted for publication in MNRA
Drought effects on specific-cause mortality in Lisbon from 1983 to 2016: risks assessment by gender and age groups
Portugal (Southwestern Europe) experiences a high incidence of dry hazards such as drought, a phenomenon that entails a notable burden of morbidity and mortality worldwide. For the first time in the Lisbon district, a time-series study was conducted to evaluate the impact of drought measured by the Standardised Precipitation Index (SPI) and Standardised Precipitation-Evapotranspiration Index (SPEI) on the daily natural, circulatory, and respiratory mortality from 1983 to 2016. An assessment by gender and adult age population groups (45-64, 65-74, ≥75 years old) was included. To estimate the relative risks and attributable risks, generalised linear models with a Poisson link were used. Additionally, the influence of heatwaves and atmospheric pollution for the period from 2007 to 2016 (available period for pollution data) was considered. The main findings indicate statistically significant associations between drought conditions and all analysed causes of mortality. Moreover, SPEI shows an improved capability to reflect the different risks. People in the 45-64 year-old group did not indicate any significant influence in any of the cases, whereas the oldest groups had the highest risk. The drought effects on mortality among the population varied across the different study periods, and in general, the men population was affected more than the women population (except for the SPEI and circulatory mortality during the long study period). The short-term influence of droughts on mortality could be explained primarily by the effect of heatwaves and pollution; however, when both gender and age were considered in the Poisson models, the effect of drought also remained statistically significant when all climatic phenomena were included for specific groups of the total population and men. This type of study facilitates a better understanding of the population at risk and allows the development of more effective measures to mitigate the drought effects on the population.publishe
Microscopic cluster model for the description of (18O,16O) two-neutron transfer reactions
Excitation energy spectra and absolute cross-section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. Exact finite-range coupled reaction channel calculations are used to analyse the data considering both the direct two-neutron transfer and the two-step sequential mechanism. For the direct calculations, two approaches are discussed: The extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre-of-mass reference frame, derived from shell-model calculations. The results describe well the experimental cross sections
Microscopic cluster model for the description of new experimental results on the C 13 (O 18, O 16) C 15 two-neutron transfer at 84 MeV incident energy
The C13(O18,O16)C15 reaction is studied at 84 MeV incident energy. Excitation energy spectra and absolute cross-section angular distributions for the strongest transitions are measured with good energy and angular resolutions. Strong selectivity for two-neutron configurations in the states of the residual nucleus is found. The measured cross-section angular distributions are analyzed by exact finite-range coupled reaction channel calculations. The two-particle wave functions are extracted using the extreme cluster and the independent coordinate scheme with shell-model derived coupling strengths. A new approach also is introduced, the microscopic cluster, in which the spectroscopic amplitudes in the center-of-mass reference frame are derived from shell-model calculations using the Moshinsky transformation brackets. This new model is able to describe well the experimental cross section and to highlight cluster configurations in the involved wave functions
Decoherence-Free Emergence of Macroscopic Local Realism for entangled photons in a cavity
We investigate the influence of environmental noise on polarization entangled
light generated by parametric emission in a cavity. By adopting a recently
developed separability criterion, we show that: i) self-stimulation may
suppress the detrimental influence of noise on entanglement; ii) when
self-stimulation becomes effective, a classical model of parametric emission
incorporating noise provides the same results of quantum theory for the
expectation values involved in the separability criterion. Moreover we show
that, in the macroscopic limit, it is impossible to observe violations of local
realism with measurements of -particle correlations, whatever n but finite.
These results provide an interesting example of the emergence of macroscopic
local realism in the presence of strong entanglement even in the absence of
decoherence.Comment: 1 figur
A bio-inspired image coder with temporal scalability
We present a novel bio-inspired and dynamic coding scheme for static images.
Our coder aims at reproducing the main steps of the visual stimulus processing
in the mammalian retina taking into account its time behavior. The main novelty
of this work is to show how to exploit the time behavior of the retina cells to
ensure, in a simple way, scalability and bit allocation. To do so, our main
source of inspiration will be the biologically plausible retina model called
Virtual Retina. Following a similar structure, our model has two stages. The
first stage is an image transform which is performed by the outer layers in the
retina. Here it is modelled by filtering the image with a bank of difference of
Gaussians with time-delays. The second stage is a time-dependent
analog-to-digital conversion which is performed by the inner layers in the
retina. Thanks to its conception, our coder enables scalability and bit
allocation across time. Also, our decoded images do not show annoying artefacts
such as ringing and block effects. As a whole, this article shows how to
capture the main properties of a biological system, here the retina, in order
to design a new efficient coder.Comment: 12 pages; Advanced Concepts for Intelligent Vision Systems (ACIVS
2011
Características geológicas y geotécnicas de los lodos de flotación de la Sierra Minera de Cartagena-La Unión (SE España)
En el trabajo se presentan los resultados de la caracterización geológico-geotécnica de los lodos de flotación (LF) de la Sierra Minera Cartagena-La Unión. Se han estudiado los LF almacenados en ocho presas, en las que se ha realizado la toma y caracterización de 42 muestras. Se han efectuado ensayos granulométricos, medida del peso especifico de las partículas sólidas, determinación del índice de plasticidad, medidas de permeabilidad in situ y de laboratorio, corte directo y humedad. Los LF según los análisis granulométricos se clasifican como limos arenosos. Presentan un índice de plasticidad medio, bajo a nulo. El ángulo de fricción interna varía entre 25 y 42 grados. La cohesión es nula o baja entre 0 y 2,2 t/m2. El peso específico de las partículas sólidas tiene un amplio rango de variación entre 1,8 y 4 g/cm3. La conductividad hidráulica saturada oscila entre 1,3x10-5 y 3,2x10-9 m/s. Las determinaciones in situ de humedad muestran que el grado de saturación permanece relativamente elevado, a pesar de las bajas precipitaciones y las elevadas tasas de vaporación. Varias presas de residuos han fallado. Las principales causas de fallos ó rotura de las presas son: 1) deslizamiento del talud, 2) sobrepaso de agua, 3) erosión del dique, 4) subsidencias o colapso del terreno. El principal problema que favorece el proceso de fallo o rotura de la presas es la existencia de un alto grado de saturación en los LF almacenados y el almacenamiento de agua en la laguna de decantación.We present the results of a geological and geotechnical characterization of the metallurgic waste from the Sierra Minera de Cartagena-La Union. We have studied eight tailings dams from which we collected and analysed 42 samples of metallurgic waste. We measured grainsize distribution, the specific gravity of solid particles, plasticity index, permeability, both in situ and in the laboratory, direct shear characteristics and moisture content. According to size distribution the tailings can be classified as sandy silt. Their plasticity index ranges from medium to nil. The internal friction angle varies between 28 and 42 degrees. Cohesion is between 0 and 2.2 t/m2. The specific gravity of the solid particles ranges widely from 1.8 to 4 g/cm3. The saturated hydraulic conductivity values vary between 1.3x 10-5 and 3.2x 10-9 m/s. The water content measured in situ shows that the degree of saturation remains relatively high despite low rainfall and high evaporation rates. Several tailings dams have failed. The leading causes of tailings-dam failure are: 1) slope instability; 2) overflow; 3) erosion; and 4) subsidence or collapse. The main factor leading to dam failure is that the tailings stored in the ponds are highly saturated
- …