62,494 research outputs found

    Short Gamma-Ray Bursts with Extended Emission Observed with Swift/BAT and Fermi/GBM

    Full text link
    Some short GRBs are followed by longer extended emission, lasting anywhere from ~10 to ~100 s. These short GRBs with extended emission (EE) can possess observational characteristics of both short and long GRBs (as represented by GRB 060614), and the traditional classification based on the observed duration places some of them in the long GRB class. While GRBs with EE pose a challenge to the compact binary merger scenario, they may therefore provide an important link between short and long duration events. To identify the population of GRBs with EE regardless of their initial classifications, we performed a systematic search of short GRBs with EE using all available data (up to February 2013) of both Swift/BAT and Fermi/GBM. The search identified 16 BAT and 14 GBM detected GRBs with EE, several of which are common events observed with both detectors. We investigated their spectral and temporal properties for both the spikes and the EE, and examined correlations among these parameters. Here we present the results of the systematic search as well as the properties of the identified events. Finally, their properties are also compared with short GRBs with EE observed with BATSE, identified through our previous search effort. We found several strong correlations among parameters, especially when all of the samples were combined. Based on our results, a possible progenitor scenario of two-component jet is discussed.Comment: Published in MNRAS; matched to the published versio

    Structure propagation for zero-shot learning

    Full text link
    The key of zero-shot learning (ZSL) is how to find the information transfer model for bridging the gap between images and semantic information (texts or attributes). Existing ZSL methods usually construct the compatibility function between images and class labels with the consideration of the relevance on the semantic classes (the manifold structure of semantic classes). However, the relationship of image classes (the manifold structure of image classes) is also very important for the compatibility model construction. It is difficult to capture the relationship among image classes due to unseen classes, so that the manifold structure of image classes often is ignored in ZSL. To complement each other between the manifold structure of image classes and that of semantic classes information, we propose structure propagation (SP) for improving the performance of ZSL for classification. SP can jointly consider the manifold structure of image classes and that of semantic classes for approximating to the intrinsic structure of object classes. Moreover, the SP can describe the constrain condition between the compatibility function and these manifold structures for balancing the influence of the structure propagation iteration. The SP solution provides not only unseen class labels but also the relationship of two manifold structures that encode the positive transfer in structure propagation. Experimental results demonstrate that SP can attain the promising results on the AwA, CUB, Dogs and SUN databases

    Premature recruitment of oocyte pool and increased mTOR activity in Fmr1 knockout mice and reversal of phenotype with rapamycin.

    Get PDF
    While mutations in the fragile X mental retardation-1 (FMR1) gene are associated with varying reproductive outcomes in females, the effects of a complete lack of FMR1 expression are not known. Here, we studied the ovarian and reproductive phenotypes in an Fmr1 knockout (KO) mouse model and the role of mammalian target of rapamycin (mTOR) signaling. Breeding, histologic and mTOR signaling data were obtained at multiple time points in KO and wild type (WT) mice fed a control or rapamycin (mTOR inhibitor) diet. KO mice showed an earlier decline in ovarian reserve than WT mice with an increased proportion of activated follicles. mTOR and phosphorylated S6 kinase (p-S6K) levels, a measure of downstream mTOR signaling, were elevated in the KO ovaries. Rapamycin blocked these effects in KO mice, and increased the primordial follicle pool and age of last litter in WT mice. Our data demonstrates an early decline in reproductive capacity in Fmr1 KO mice and proposes that premature recruitment of the primordial pool via altered mTOR signaling may be the mechanism. Reversal of phenotypes and protein levels in rapamycin-treated KO mice, as well as increased reproductive lifespan of rapamycin-fed WT mice, suggest the mTOR pathway as a potential therapeutic target

    Train unit scheduling with bi-level capacity requirements

    Get PDF
    Train unit scheduling concerns the assignment of train unit vehicles to cover all the journeys in a fixed timetable allowing the possibility of coupling and decoupling to achieve optimal utilization while satisfying passenger demands. While the scheduling methods usually assume unique and well-defined train capacity requirements, in practice most UK train operators consider different levels of capacity provisions. Those capacity provisions are normally influenced by information such as passenger count surveys, historic provisions and absolute minimums required by the authorities. In this paper, we study the problem of train unit scheduling with bi-level capacity requirements and propose a new integer multicommodity flow model based on previous researches. Computational experiments on real-world data show the effectiveness of our proposed methodology

    Spatial and Wavenumber Resolution of Doppler Reflectometry

    Full text link
    Doppler reflectometry spatial and wavenumber resolution is analyzed within the framework of the linear Born approximation in slab plasma model. Explicit expression for its signal backscattering spectrum is obtained in terms of wavenumber and frequency spectra of turbulence which is assumed to be radially statistically inhomogeneous. Scattering efficiency for both back and forward scattering (in radial direction) is introduced and shown to be inverse proportional to the square of radial wavenumber of the probing wave at the fluctuation location thus making the spatial resolution of diagnostics sensitive to density profile. It is shown that in case of forward scattering additional localization can be provided by the antenna diagram. It is demonstrated that in case of backscattering the spatial resolution can be better if the turbulence spectrum at high radial wavenumbers is suppressed. The improvement of Doppler reflectometry data localization by probing beam focusing onto the cut-off is proposed and described. The possibility of Doppler reflectometry data interpretation based on the obtained expressions is shown.Comment: http://stacks.iop.org/0741-3335/46/114

    Inviscid dynamical structures near Couette flow

    Full text link
    Consider inviscid fluids in a channel {-1<y<1}. For the Couette flow v_0=(y,0), the vertical velocity of solutions to the linearized Euler equation at v_0 decays in time. At the nonlinear level, such inviscid damping has not been proved. First, we show that in any (vorticity) H^{s}(s<(3/2)) neighborhood of Couette flow, there exist non-parallel steady flows with arbitrary minimal horizontal period. This implies that nonlinear inviscid damping is not true in any (vorticity) H^{s}(s<(3/2)) neighborhood of Couette flow and for any horizontal period. Indeed, the long time behavior in such neighborhoods are very rich, including nontrivial steady flows, stable and unstable manifolds of nearby unstable shears. Second, in the (vorticity) H^{s}(s>(3/2)) neighborhood of Couette, we show that there exist no non-parallel steadily travelling flows v(x-ct,y), and no unstable shears. This suggests that the long time dynamics in H^{s}(s>(3/2)) neighborhoods of Couette might be much simpler. Such contrasting dynamics in H^{s} spaces with the critical power s=(3/2) is a truly nonlinear phenomena, since the linear inviscid damping near Couette is true for any initial vorticity in L^2

    Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts

    Get PDF
    ©2002 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: : http://link.aip.org/link/?APPLAB/81/1869/1DOI:10.1063/1.1504867Gas sensors have been fabricated using the single-crystalline SnO₂ nanobelts. Electrical characterization showed that the contacts were ohmic and the nanobelts were sensitive to environmental polluting species like CO and NO₂ , as well as to ethanol for breath analyzers and food control applications. The sensor response, defined as the relative variation in conductance due to the introduction of the gas, is 4160% for 250 ppm of ethanol and 21550% for 0.5 ppm NO₂ at 400 °C. The results demonstrate the potential of fabricating nanosized sensors using the integrity of a single nanobelt with a sensitivity at the level of a few ppb

    Dual-mode mechanical resonance of individual ZnO nanobelts

    Get PDF
    ©2003 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/82/4806/1DOI:10.1063/1.1587878The mechanical resonance of a single ZnO nanobelt, induced by an alternative electric field, was studied by in situ transmission electron microscopy. Due to the rectangular cross section of the nanobelt, two fundamental resonance modes have been observed corresponding to two orthogonal transverse vibration directions, showing the versatile applications of nanobelts as nanocantilevers and nanoresonators. The bending modulus of the ZnO nanobelts was measured to be ~52 GPa and the damping time constant of the resonance in a vacuum of 5×10–8 Torr was ~1.2 ms and quality factor Q = 500

    Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation

    Full text link
    The Josephson effects associated with quantum tunneling of Cooper pairs manifest as nonlinear relations between the superconductivity phase difference and the bias current and voltage. Many novel phenomena appear, such as Shapiro steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under microwave shining, which can be used as a voltage standard. Inversely, the Josephson effects provide a unique way to generate high-frequency electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate high-Tc superconductors accelerated the effort to develop novel source of EM waves based on a stack of atomically dense-packed intrinsic Josephson junctions (IJJs), since the large superconductivity gap covers the whole terahertz frequency band. Very recently, strong and coherent terahertz radiations have been successfully generated from a mesa structure of Bi2Sr2CaCu2O8+δ\rm{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystal which works both as the source of energy gain and as the cavity for resonance. It is then found theoretically that, due to huge inductive coupling of IJJs produced by the nanometer junction separation and the large London penetration depth of order of μm\rm{\mu m} of the material, a novel dynamic state is stabilized in the coupled sine-Gordon system, in which ±π\pm \pi kinks in phase differences are developed responding to the standing wave of Josephson plasma and are stacked alternatively in the c-axis. This novel solution of the inductively coupled sine-Gordon equations captures the important features of experimental observations. The theory predicts an optimal radiation power larger than the one available to date by orders of magnitude, and thus suggests the technological relevance of the phenomena.Comment: review article (69 pages, 30 figures
    corecore