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OPEN

ORIGINAL ARTICLE

Psychiatric disturbances regulate the innate immune system in
CSF of conscious mice
ES Onaivi1, N Schanz1 and ZC Lin2,3,4

Environment may affect brain activity through cerebrospinal fluid (CSF) only if there are regulatory molecules or cascades in CSF
that are sensitive to external stimuli. This study was designed to identify regulatory activity present in CSF, better elucidating
environmental regulation of brain function. By using cannulation-based sequential CSF sampling coupled with mass spectrometry-
based identification and quantification of proteins, we show that the naive mouse CSF harbors, among 22 other pathways, the
innate immune system as a main pathway, which was downregulated and upregulated, respectively, by acute stressor (AS) and
acute cocaine (AC) administrations. Among novel processes and molecular functions, AS also regulated schizophrenia-associated
proteins. Furthermore, AC upregulated exosome-related proteins with a false discovery rate of 1.0 × 10−16. These results suggest
that psychiatric disturbances regulate the neuroimmune system and brain disorder-related proteins, presenting a sensitive
approach to investigating extracellular mechanisms in conscious and various mouse models of psychiatric disorders.
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INTRODUCTION
Neuroimmune systems, especially the innate immune system, are
being increasingly implicated in mental disorders.1–4 More
specifically, the immune systems are postulated to prune
dendrites and help maintain neuronal plasticity in the brain.5–7

The fact that neuronal plasticity are subject to environmental
regulations suggests that these neuroimmune systems be also
sensitive to environment, which awaits experimental evidence for
validation.
Cerebrospinal fluid (CSF) has been used as a source of

biomarkers in humans with neuropsychiatric disorders and as an
avenue to deliver therapeutic agents directly into CNS in rodent
models.8–12 As extracellular molecules in CSF bath brain cells and
modulate cellular plasticity constantly,13 monitoring the dynamics
of these molecules in rodent models may unravel the brain
mechanisms underlying behavior and pathogenesis. However,
such a monitoring method is missing at present.
Mice are primary biomedical models and research tools and the

ability to profile CSF molecules in mice will help better understand
the molecular mechanisms for brain function and disorder. Mouse
models for human neuropsychiatric disorders allow easy genetic
modifications through different approaches and
technologies.14–18 In most cases, CSF is used as a drug delivery
system by implanting intracerebroventricular (ICV) cannulae
through skull into the ventricles in brain.19,20

Here we report a stereotaxic approach coupled with protein
profiling analysis of sequential multiple CSF samples from the
same group of live C57BL/6J mice, dissecting environmental
regulation of multiple pathways in CSF of conscious mouse brain.

MATERIALS AND METHODS
Animals and stereotaxic surgery
Adult male mice (25–30 g, C57BL/6 from Charles River Laboratories,
Wilmington, MA, USA) were subjected to standard stereotaxic surgery for
the implantation of unilateral or bilateral guide cannulae. In brief, the
animals were anesthetized and placed in a Kopf stereotaxic frame, and an
incision was made to expose the skull. Small holes were drilled and the
guide cannula (Plastics One, Roanoke, VA, USA) was lowered 0.5 mm above
the lateral ventricles (ICV) and cemented with dental acrylic cement mixed
with cyanoacrylate glue to secure the cannula to the skull. Cannula
dummies (Plastics One) are inserted into the guide cannulas to keep them
patent. The coordinates used for ICV in mm was Ant. ±3.5, Vert. ±1.3 and
Lat. ±1.0 according to the atlas of Slotnick and Leonard.

Histological verification of cannula placement
Seven days after surgery, mice were anesthetized with ketamine/xylazine
solution and transcardially perfused with 0.9% NaCl followed by 4%
paraformaldehyde in 0.1 M phosphate buffer, pH 7.1. The brains were
carefully removed and blocked to obtain the forebrain region. The
forebrain was postfixed for 48 h, cryoprotected in 20% sucrose overnight
and then rapidly frozen in dry ice. A complete set of coronal serial sections
was cut through the forebrain at 30mm, mounted on microscope slides
and thionin counterstained to identify the site where the cannula was
placed.

Acute stressor (AS) and acute cocaine (AC) treatment
Approximately 30min after the first withdrawal of CSF, each of nine mice
was placed into warm water in a 4-l beaker (three-fourth of the volume
filled), followed by forced swimming for 15min. Wet mice were all dried
out under a warm lamp (60 W) and 30min later withdrawn for a second
CSF sample. Next day, each mouse was intraperitoneally injected with
cocaine (single dose at 20mg kg− 1), followed by a third CSF withdrawal 30
min later.
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CSF sampling
Sampling from the cerebellomedullary cistern (CMC) followed a published
procedure.21 To withdraw CSF from the ICV cannula, tubing (~2 cm in
length, Plastics One) was connected to the internal (Plastics One) of the
cannula at one end and to a 10-μl Hamilton syringe at the other end.
Negative pressure was placed on the internal by gently pulling the plunger
of the syringe. Each withdrawal was ~2 μl, about 0.5 h before or after
treatment. Collected CSF was transferred into an ice-cold tube, followed by
−20 °C storage before further processing by mass spectrometry (MS)
analysis for identification and quantification of proteins.

MS-based protein profiling
CSF was pooled from nine mice for each condition. We used Pierce's
Antibody-Based Albumin/IgG Removal Kit to deplete albumin and IgG
before MS analysis at Bioproximity LLC (Chantilly, VA, USA). The samples
were run on the Thermo LTQ Velos (San Jose, CA, USA; a dual-pressure
linear ion trap mass spectrometer). The Velos utilized the same S-lens as
the Q-Exactive to focus the ion cloud as it entered the mass spectrometer
and improved overall sensitivity. The linear ion trap enabled very fast
sequencing speed of 15 MS/MS scans in 1.8 s. Collision-induced
fragmentation was used to fragment peptides for sequence analysis. CID
produced peptide ladders from both N- and C-terminal ends of the
peptide, allowing for complementary and confirmatory sequence inter-
pretation resulting in high confidence assignments. The limit of identifica-
tion sensitivity of MS was ~1 fmol.22

MS data analysis
Parsimony type was used to classify protein forms that could have
overlapping peptide sequences.23 PepHits were used to normalize for load
variation and normalized PepHits were used to calculate a sensitivity value:
base 2 log of ratio (acute stressor (AS)/control (CK), acute cocaine (AC)/AS
or AC/CK) for condition-related difference. sensitivity value larger than 1

(twofold upregulation) or less than −1 (twofold downregulation or 0.5-fold)
are arbitrarily cutoffs for biological significances.

Pathway analysis
We used the frequently updated MetaCore software/database to map
pathways (Thomson Reuters, New York, NY, USA).24 Proteins with biologic
significance per sensitivity values were analyzed for pathway regulations or
subcellular localizations with significance or enrichment score (− log10P-
value). In Enrichment by Protein Function interactome analysis, P-values
reflect the probability to have that many or more objects of that protein
class in an experiment than would be expected by chance (with a positive
Z-score). If a Z-score is negative, the P-value represents the probability to
have that many or fewer objects of that protein class than would be
expected by chance. Protein function categorization was performed by
listing of Network Objects or based on Public Ontologies (GO Molecular
Functions), both implemented in MetaCore.
Interactions between AS and AC were evaluated by carrying out the

interactions between datasets analysis of AS- or AS-regulated proteins (also
implemented in MetaCore). This algorithm was to examine whether the
objects contained in one dataset had significant numbers of interactions
with the other active datasets. A P-value described the probability of
the observed ratio of connections with the occurring merely by chance.
A Z-score gave a measure of how saturated the potential number of
interactions between datasets were. The higher the Z-score the more
saturated the object’s connections were with objects from the dataset.

RESULTS
The purpose of this study was to map out regulatory pathways in
the CSF that may not only mirror but also modulate brain activity.
We were focused on pathway analysis because molecular path-
ways have central roles in both biologic and disease
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Figure 1. Cannulation-based repeated sampling of cerebrospinal fluid (CSF) from intracerebroventricular (ICV) of mouse brain. (a) Study
design. Notice that feasibility study and sensitivity confirmation used two different groups of mice. (b) ICV cannulation and CSF withdrawal.
Insert, a close-up of an installed ICV cannula indicated by an open arrow. (c) Postsurgery verification of cannula installed to ICV, based on
coronal sectioning of the brain. Open arrow, drilled hole for guide cannula; arrowhead, hole directed into lateral ventricle (LV). (d) Constant
protein content in CSF withdrawn from mouse cerebellomedullary cistern (CMC) or ICV with a 0.5-h interval, based on Invitrogen’s
NanoOrange quantification technology.
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mechanisms.25–32 The study design is outlined in Figure 1a. In
adult mice, after stereotaxic surgery and unilateral or bilateral
cannulation, ICV was used for repeated CSF sampling (Figure 1b)
for the determination of dynamics of protein composition in the
extracellular space. The correct position of cannula ICV implanta-
tion was confirmed by histological examination (Figure 1c, where
slightly large appearance of the ventricle could be due to the
cannula placement). We found that the average protein level from
an ICV sample ( ~2 μl) was neither different from one in the next
sample that was collected 0.5 h later, nor different from one in a
CMC sample (Figure 1d). These data suggest that 2 μl sampling
does not significantly affect protein contents in the subsequent
samples from the same mice. Next, we carried out protein
profiling analysis of CSF samples from mouse brain before (CK)
and after AS, and after AC by MS analysis for identification and
quantification of these proteins.
As a result, a total of 268 proteins were detected in the CSF

samples at the sensitivity of ~1 fmol; 134 (50.0%) were regulated
by AS and 185 (69.0%) were regulated by AC, comparing with CK
(see Supplementary Table 1 for a complete list of regulated
proteins). Those regulated were mainly peptidase inhibitor activity
(see Supplementary Figure 1). Among the AS-regulated proteins,
14 were known ligands (P= 0.0000742, Z-score = 4.934), 10 were
proteases (P= 0.0282, Z-score = 2.297) and 34 were known
enzymes (P= 0.0120, Z-score = 2.474), based on enrichment by
protein function interactome analysis. Among the AC-regulated
proteins, 17 were known ligands (P= 0.000179, Z-score = 4.585), 13
were proteases (P= 0.0298, Z-score = 2.205) and 45 were known
enzymes (P= 0.0212, Z-score = 2.19). In all, 62.2% of the AS-
upregulated proteins were also upregulated by AC (representing
37.0% of its own); 42.3% of the AS-downregulated proteins were

also downregulated by AC (representing 52.4% of its own; see
Supplementary Table 1 for details). On the basis of these
enrichments by protein function, both environments regulated
more enzymes than ligands or proteases. Only 188 of the proteins
were detected in the naive CSF.
Systematic analysis of the 188 proteins revealed 23 significant

pathways in the naive CSF. Among the 23 significant pathways in
the naive CSF, the complement pathways of the innate immune
system represent the major ones (Figure 2). They included the
lectin-induced (P= 9.59 × 10–19, false discovery rate (FDR) = 3.6 ×
10−16), classical (P= 3.10 × 10−18, FDR= 5.8 × 10−16) and alternative
(P= 1.86 × 10−17, FDR= 2.3 × 10−15) complement pathways. These
findings suggest that this immune system may be pruning
synapses constantly to facilitate synaptic plasticity in the CNS.7

Other pathways with less significances were blood coagulation,
LRRK2 (P= 4.83 × 10−8), protein folding (P= 7.39 × 10−7) and
glycolysis (P= 1.29–2.04 × 10−6) pathways.33,34 Cell surface matrix
and cytoskeleton configurations were also reflected by the CSF
pathways. Majority of the 188 proteins were known localized to
extracellular region (P= 1.30 × 10−29; Figure 2, insert), consistent
with the fact that these were sampled from the extracellular space
inside the brain (ICV). In addition to these pathways, responses to
wounding (P= 1.34 × 10−39) and stress (P= 1.71 × 10−35) are the
top processes, and endopeptidase inhibitions (P= 3.86 × 10−46) or
enzyme activity (P= 4.32 × 10−42) regulations are the top molecular
functions in the ICV35,36 (Supplementary Figure 2).
Complement pathways were regulated by both AS and AC but

in two opposite directions. Fifteen-minute forced swimming
downregulated the complement pathways the most and by
contrast, AC upregulated the complement pathways the most by
comparing with CK (Figure 3a). As evidenced for the significance
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Figure 2. Pathways present in naive cerebrospinal fluid (CSF). Green bar, 23 significant pathways; dark gray bar, not significant. Insert, top two
localizations of CSF proteins to extracellular regions. Parenthesis on bar, false discovery rate (FDR).
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of regulations, the P-values were 5.43 × 10−19 for AS down-
regulation and 1.56 × 10−13 for AC upregulation of the lectin-
induced pathway; 1.20 × 10−18 for AS downregulation and
1.37 × 10−14 for AC upregulation of the classical pathway; and
3.84 × 10−14 for AS downregulation and 1.38 × 10−16 for AC
upregulation of the alternative pathways (Figure 3a). In this study,
we did not sample the CSF immediately before the AC, as a
control for the AS ‘hangover’ effects, but when compared with the
naive CSF, AC still upregulated these complement pathways the
most (Supplementary Figure 3). AS upregulated the protein
folding (Bradykinin/Kallidin maturation), blood coagulation and
glycolysis pathways all with smaller significances (P= 2.26–-
12.1 × 10−7). AC downregulated none of the pathways in a
significant manner (the latest pathway datasets indicated that
AC might downregulate C5, which however is not confirmed yet).
Particular proteins in the regulated complement pathways are

indicated in the pathway map (Figure 3b). The AS-downregulated
proteins included C3, C4, C5, Factor 1, and the C3 and C5
convertases and the membrane attach complex in the lectin-
induced complement pathway. The AC-upregulated proteins
included CRP and IgM in the classical pathway, and C7, C8, C9
and clusterine in the lectin-induced complement pathway. This
profiling method may help us to better understand how
complement pathways are regulated, contributing to the
dynamics of circuitry in the conscious CNS.6,37

In addition to the 6 AS-regulated and 3 AC-regulated pathways,
AS regulated 36 other pathways (20 downs and 16 ups) and AC
upregulated 20 other pathways (Figure 2 and Supplementary
Figure 3). Most of them were novel, including cell adhesion
remodeling and extracellular cytoskeleton. AS upregulated
processes such as the Kallikren-kinin (inflammation) system,
cytoskeleton rearrangement and AC upregulated the Kallikren-
kinin system as well, along with interleukin-6 signaling and
integrin-mediated cell matrix adhesion. AC upregulated endo-
peptidase regulators significantly (P= 3.49 × 10−45), whereas AS
downregulated these molecular functions (P= 3.49 × 10−22, data
not shown). These findings suggested that the CSF pathways were
sensitive to extensive regulations by environment, which may
underlie an extracellular interaction between environment and
brain circuitry.
Majority of the regulated proteins have not been characterized

intensively yet. Supplementary Figure 4 shows six of them that
were differentially affected by AS and AC. For example, Serpina3C
and malate dehydrogenase 1 protein levels were downregulated
and upregulated (to 0.3-fold and 5.91-fold) by AS only. Interest-
ingly, the human ortholog Serpina and the human malate
dehydrogenase 1 were both associated with Schizophrenia,38–41

perhaps underlying stressors as a risk factor for this brain disorder.
The inflammatory response protein Mug1 and the Felty syndrome-
related Eef1a1 protein levels were largely upregulated (3.35-fold
and 13.24-fold) by AC only. The copper-carrying protein cerulo-
plasmin and serum amyloid A4 levels were first downregulated
(0.41-fold and 0.1-fold) by AS and then upregulated (2.80-fold and
2.70-fold) by AC. In addition, the levels of cathelicidin antimicro-
bial peptide were downregulated to 0.17-fold by AS but
upregulated to 2.82-fold by AC. The cytoskeletal protein Tubb5
was (up 11.1-fold) regulated by AC only. The GABAA receptor
modulator42 diazepam-binding inhibitor’s levels were upregulated
to 5.54-fold by AS but downregulated to 0.48-fold by AC. The

levels of candidate signaling protein contactin associated protein-
like 5A were upregulated to 5.17-fold by AS but downregulated to
0.1-fold by AC. Although CSF proteins might have unusual
composition, these findings imply new pathways of brain
response to changing environment, warranting future investiga-
tion of their roles in cellular function of the brain.
More interestingly, AC upregulated proteins associated with

extracellular vesicular exosomes, with a high enrichment score of
17.9 and a FDR of 1.0 × 10−16, with little downregulation of
proteins in this category (Figure 3c). In contrast, AS exerted
both up- and downregulations with much smaller enrichment
scores (4.6 and 4.2). These findings suggest that AC could alter
another type of intercellular communication, in addition to
neurotransmission.
Finally, interaction analysis showed that all four data sets (up- or

downregulations of AS or AC) were overconnected; none were
underconnected (Supplementary Table 2). Specifically, AC-
upregulated proteins were most significantly overconnected with
AS-sensitive proteins (Z-score>11.4), as well as AC-downregulated
ones (Z-score = 9.8). By contract, AC-downregulated proteins were
least significantly overconnected with AS-sensitive proteins (Z-
scoreo5.2). Such an overconnected pattern suggests that
cocaine-stimulated brain activity be closely related to stress
pathways, which merits further study.

DISCUSSION
By using a simple and sensitive method to monitor molecular
composition in CSF of conscious mouse brain, we observed, for
the first time, that the innate immune system represented the
main pathways inside the CSF and that AS and cocaine could both
regulate the innate immune system in the brain but in two
opposite directions. In addition, we show that environment may
regulate exosome-related protein levels in CSF.
To our knowledge, this is the first in vivo study on CSF proteins

in intact conscious brains of adult mice. Altered concentrations of
proteins or small molecules in CSF have been demonstrated for
psychiatric disorders such as schizophrenia, bipolar disorder and
depression.43–46 In fact, many novel proteins are present in the
CSF but little is known about their modes of action and function
yet. In this study, we report that in both AS- and AC-treated
animals more proteins were upregulated and fewer proteins were
downregulated (Supplementary Table 1). These results suggest
that novel CSF activity remains to be discovered for their role and
impact on CNS function and dysfunction. Some of these proteins
with known intracellular activity (such as the AS- and AC-
upregulated Eukaryotic Translation Initiation Factor 4A/Eif4a1 or
RAP1, GTP-GDP Dissociation Stimulator 1/Rap1gds1) may have
been released into extracellular space by subcellular mechanisms
such as formation of extracellular vesicles47–49 including exosomes
(Figure 3c). Therefore, it will be interesting to examine which of
these molecules, including proteins, genetic materials and small
molecules, in the CSF are confined to the extracellular vesicles
because these extracellular vesicles may affect intracellular activity
of brain cells. In addition, the innate immune system may have
had an important role in environmental regulations of neuronal
activity including morphologic neuroplasticity. One limitation of
this study design lies in lack of control for hangover effects of AS
on the AC results. However, the AC upregulation of the innate

Figure 3. Cerebrospinal fluid (CSF) pathways regulated by acute stressor (AS) and acute cocaine (AC). (a) Top three pathways downregulated
(down) or upregulated (up) by AS (upper portion/brown rectangle) or by AC (lower portion/aquamarine rectangle). Color bars, statistically
significant; gray bar, not significant. (b) Pathway map for AS-downregulated lectin-induced complement pathway. Upleft insert, unique
proteins of AC-upregulated classical complement pathway; downright insert, unique proteins of AC-upregulated lectin-induced complement
pathway. Red thermometer, significantly regulated proteins. (c) Upregulation of exosome-related proteins by AC. Asterisk, not listed among
top 50 categories; parenthesis on bar, false discovery rate (FDR). In all, 11.6% of the AC-upregulated proteins were exosome related compared
with 2.1% of the AC downregulated, 6.1% of the AS upregulated or 7.7% of the AS downregulated; see Supplementary Table 1 for details.
Enrichment score (− log10P-value) of regulation is based on comparison with control (CK; black bar).
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immune system holds true based on comparison with either CK or
AS (Supplementary Figure 3).
In this study we have shown that the lateral ventricles in adult

mouse brain, after stereotaxic surgery and cannulation, unilaterally
or bilaterally, can be utilized for repeated CSF sampling for the
determination of and alterations in protein dynamics in the brain.
Previous continuous CSF sampling in mice from the brain and
cisternum magnum had been controversial because of low
volume and production rate in mice compared with rats and
humans. However, with new and sensitive protein detection
technology, we report constant CSF protein content of 1 μg μl− 1

sensitivity from the multiple CSF sampling from the lateral
ventricles. Further studies will be necessary to localize brain-
area-specific alterations associated with the global molecular
protein dynamics predicted by this model. That approach will be
much straightforward dissection of brain regions to determine
associated protein dynamics with specific function for further
analysis. This will provide a powerful tool to determine the roles of
such identified proteins and transcription factors and specific
brain regions in neuropsychiatric disorders.
As mentioned above, this study at its current stage has major

limitations. The controls used were not necessarily the best
controls, particularly considering the serial nature of the design
and the preliminary nature of the development of the approach:
stressed versus non-stressed and cocaine versus saline-treated
would have been much better comparisons. As of the limited
design, we are unable to evaluate yet the time courses of the
regulations, in particular.
In summary, we have used stereotaxic surgical approaches

coupled with protein profiling analysis of sequential multiple CSF
sampling in conscious mouse models for neuropsychiatric
disturbances and demonstrated the potentials of monitoring
molecular dynamics in nervous system extracellular space in
mouse brain. This method, when combined with site-specific
investigation of neurobiological mechanisms in the brain, provides
a powerful tool to screen and identify the screen-associated real-
time changes in nonsynaptic signal transmission in such animal
models of brain disorders.
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