4,339 research outputs found

    Kinetics of thermal oxidation of 6H silicon carbide in oxygen plus trichloroethylene

    Get PDF
    In this work, the behaviors of the trichloroethylene (TCE) thermal oxidation of 6H silicon carbide (SiC) are investigated. The oxide growth of 6H SiC under different TCE concentrations (ratios of TCE to O2) follows the linear-parabolic oxidation law derived for silicon oxidation by Deal and Grove, J. Appl. Phys., 36 (1965). The oxidation rate with TCE is much higher than that without TCE and strongly depends on the TCE ratio in addition to oxidation temperature and oxidation time. The increase in oxidation rate induced by TCE is between 2.7 and 67% for a TCE ratio of 0.001-0.2 and a temperature of 1000-1150°C. Generally, the oxidation rate increases quickly with the TCE ratio for a TCE ratio less than 0.05 and then gradually saturates for a ratio larger than 0.05. The activation energy EB/A of the TCE oxidation for the TCE ratio range of 0.001-0.2 is 1.04-1.05 eV, which is a little larger than the 1.02 eV of dry oxidation. A two-step model for the TCE oxidation is also proposed to explain the experimental results. The model points out that in the SiC oxidation with TCE, the products (H2O and Cl2) of the reaction between TCE and O2 can speed up the oxidation, and hence, the oxidation rate is highly sensitive to the TCE ratio. © 2005 The Electrochemical Society. All rights reserved.published_or_final_versio

    Growth, Reproductive Condition, And Digestive Tubule Atrophy Of Pacific Oyster Crassostrea Gigas In Gamakman Bay Off The Southern Coast Of Korea

    Get PDF
    Spat of Pacific oysters (Crassostrea gigas) were collected from Gamakman Bay, Korea, and raised in a spat hardening facility located in the low intertidal zone of the bay for a hardening/stunting period of 10 mo. Seasonal changes in growth, reproductive condition, and digestive tubule atrophy (DTA) of these hardened/stunted oysters were monitored for more than a year after transplanting to a suspended longline system in a grow-out area in the bay. After transplantation, the hardened/stunted oysters showed a logarithmic increase in shell size for the first 4 mo, from June to October, and growth remained stable from late fall to early spring. During the 12 mo of the grow-out, the shell size of the hardened/stunted oysters increased from 15.4-74.2 mm, and tissue weight increased from 0.49-12.85 g. Histological analysis revealed that gametogenesis of hardened/stunted oysters commenced as early as February when water temperature remained at 10 degrees C, and spawning occurred from July to September when water temperature reached 25-27 degrees C. DTA assessed from histological analysis was higher from September to February, when the chlorophyll a level in the bay was lower. These data suggest that seasonal fluctuations in water temperature and food availability in the water column are the 2 main environmental parameters governing reproduction and growth of oyster in Gamakman Bay, and DTA could be a useful biomarker for monitoring the nutritional condition of oysters

    3D Landslide Models in VR

    Full text link
    peer reviewedThe present paper describes the elaboration of 3D surface and geological models generated for a series of landslide sites, zones marked by large incipient slope failures, or those presenting structural characteristics of an ancient giant mass movement. For both, surface and geological models, high-resolution satellite or drone imagery was draped on the digital elevation model constructed from the same imagery or using Radar or LiDAR data. The geological models further include geophysical data, supported by differential GPS measurements, complemented by georeferenced geological and tectonic maps and related geological sections. The soft layer thickness information and borehole data are typically represented in terms of logs inside the model. For several sites also slope stability analyses were performed, either in 2D or in 3D. Inputs for those analyses were directly extracted from the 3D geomodels, outputs were again represented in the models. Some of those models, such as the one produced for the right-bank slopes of the Rogun Dam construction site can be quite complex and we clearly could notice that an immersive analysis using VR technology helps understand their internal structure and perform a better slope stability analysis. Still these analyses have their limits, as a study in Virtual Reality is purely individual (at present time, the visiting researcher is separated from the rest of the World). Therefore, we suggest that a real advancement can only be achieved if the technological developments go along with a stronger collaboration between scientists from the various geo-domains, who could also be immersed in the same virtual model (~collaborative VR)

    Numerical simulation of water impact of solid bodies with vertical and oblique entries

    Get PDF
    The flow problem of hydrodynamic impact during water entry of solid objects of various shapes and configurations is simulated by a two-fluid free surface code based on the solution of the Navier-Stokes equations (NSE) on a fixed Cartesian grid. In the numerical model the free surface is captured by the level set function, and the partial cell method combined with a local relative velocity approach is applied to the simulation of moving bodies. The code is firstly validated using experimental data and other numerical results in terms of the impact forces and surface pressure distributions for the vertical entry of a semi-circular cylinder and a symmetric wedge. Then configurations of oblique water entry of a wedge are simulated and the predicted free surface profiles during impact are compared with experimental results showing a good agreement. Finally, a series of tests involving vertical and oblique water entry of wedges with different heel angles are simulated and the results compared with published numerical results. It is found that the surface pressure distributions and forces predicted by the present model generally agree very well with other numerical results based on the potential flow theory. However, as the current model is based on the solution of the NSE, it is more robust and can therefore predict, for example, the formation and separation of the thin flow jets (spray) from surface of the wedge and associated ventilation phenomena for the cases of oblique water entry when the horizontal velocity is dominant. It is also noted that the potential flow theory can result in over-estimated negative pressures at the tip of the wedge due to its inherent restriction to nonseparated flows. © 2013 Elsevier Ltd. All rights reserved

    New Rh-ZnO/carbon nanotubes catalyst for methanol synthesis

    Get PDF
    A new catalyst for methanol synthesis, ZnO-promoted rhodium supported on carbon nanotubes, was developed. It was found that the Rh-ZnO/CNTs catalyst had high activity of 411.4 mg CH3OH/g/cat/h and selectivity of 96.7 % for methanol at 1 MPa and 523 K. The activity of this catalyst is much higher than that of NC 207 catalyst at the same reaction conditions. It was suggested that the multi-walled structure CNTs favored both the couple transfer of the proton and, electron over the surface of the catalyst and the uptake of hydrogen which was favorable to methanol synthesis

    Multimodality Treatment with Conventional Transcatheter Arterial Chemoembolization and Radiofrequency Ablation for Unresectable Hepatocellular Carcinoma

    Get PDF
    Background/Aims: To evaluate the efficacy of multimodality treatment consisting of conventional transcatheter arterial chemoembolization (TACE) and radiofrequency ablation (RFA) in patients with non-resectable and non-ablatable hepatocellular carcinoma (HCC). Methods: In this retrospective study, 85 consecutive patients with HCC (59 solitary, 29 multifocal HCC) received TACE followed by RFA between 2001 and 2010. The mean number of tumors per patient was 1.6 +/- 0.7 with a mean size of 3.0 +/- 0.9 cm. Both local efficacy and patient survival were evaluated. Results: Of 120 treated HCCs, 99 (82.5%) showed a complete response (CR), while in 21 HCCs (17.5%) a partial response was depicted. Patients with solitary HCC revealed CR in 91% (51/56); in patients with multifocal HCC (n = 29) CR was achieved in 75% (48 of 64 HCCs). The median survival for all patients was 25.5 months. The 1-, 2-, 3- and 5-year survival rates were 84.6, 58.7, 37.6 and 14.6%, respectively. Statistical analysis revealed a significant difference in survival between Barcelona Clinic Liver Cancer (BCLC) A (73.4 months) and B (50.3 months) patients, while analyses failed to show a difference for Child-Pugh score, Cancer of Liver Italian Program (CLIP) score and tumor distribution pattern. Conclusion: TACE combined with RFA provides an effective treatment approach with high local tumor control rates and promising survival data, especially for BCLC A patients. Randomized trials are needed to compare this multimodality approach with a single modality approach for early-stage HCC. Copyright (C) 2011 S. Karger AG, Base

    IN-SITU RAMAN-SPECTROSCOPIC STUDY OF OXYGEN ADSPECIES ON A TH-LA-O-X CATALYST FOR METHANE OXIDATIVE COUPLING REACTION

    Get PDF
    The superoxide adspecies O-2(-) is identified by in situ Raman spectroscopy on a functioning Th-La-O-x catalyst for methane oxidative coupling reaction at 680-860 degrees C

    A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins

    Get PDF
    Subcellular locations of proteins are important functional attributes. An effective and efficient subcellular localization predictor is necessary for rapidly and reliably annotating subcellular locations of proteins. Most of existing subcellular localization methods are only used to deal with single-location proteins. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. To better reflect characteristics of multiplex proteins, it is highly desired to develop new methods for dealing with them. In this paper, a new predictor, called Euk-ECC-mPLoc, by introducing a powerful multi-label learning approach which exploits correlations between subcellular locations and hybridizing gene ontology with dipeptide composition information, has been developed that can be used to deal with systems containing both singleplex and multiplex eukaryotic proteins. It can be utilized to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centrosome, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome, (17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole. Experimental results on a stringent benchmark dataset of eukaryotic proteins by jackknife cross validation test show that the average success rate and overall success rate obtained by Euk-ECC-mPLoc were 69.70% and 81.54%, respectively, indicating that our approach is quite promising. Particularly, the success rates achieved by Euk-ECC-mPLoc for small subsets were remarkably improved, indicating that it holds a high potential for simulating the development of the area. As a user-friendly web-server, Euk-ECC-mPLoc is freely accessible to the public at the website http://levis.tongji.edu.cn:8080/bioinfo/Euk-ECC-mPLoc/. We believe that Euk-ECC-mPLoc may become a useful high-throughput tool, or at least play a complementary role to the existing predictors in identifying subcellular locations of eukaryotic proteins

    Treatment of hallux valgus by modified McBride procedure: a 6-year follow-up

    Get PDF
    PubMed ID: 20505975Background Surgical decision-making was reevaluated by comparison with an algorithm designed to analyze treatment of hallux valgus deformities. Materials and methods A modified McBride procedure was performed on 52 feet of 35 patients with hallux valgusdeformity. From this series, 36 feet of 21 patients were evaluated preoperatively, early postoperatively, and late postoperatively by means of subjective evaluation and clinical and radiological findings. Results The hallux valgus angle preoperatively, early postoperatively, and late postoperatively was 32.7 ± 8.5°, 10.1 ± 6.9°, and 20.6 ± 9.5°, respectively. Hallux valgus recurrence of 72.2% was observed. Subjective results were better and the patients rated their satisfaction with the procedure as excellent or high in 23 cases (63.9%) and moderate, low, or unsatisfactory in 13 cases (36.1%). Conclusions This level of patient satisfaction demonstrates that the McBride procedure is an efficient approach for eliminating pain due to hallux valgus deformity. © The Author(s) 2010
    corecore