3,658 research outputs found
Escort Evolutionary Game Theory
A family of replicator-like dynamics, called the escort replicator equation,
is constructed using information-geometric concepts and generalized information
entropies and diverenges from statistical thermodynamics. Lyapunov functions
and escort generalizations of basic concepts and constructions in evolutionary
game theory are given, such as an escorted Fisher's Fundamental theorem and
generalizations of the Shahshahani geometry.Comment: Minor typo correctio
Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing
Here we demonstrate a method for unbiased multiplexed deep sequencing of RNA and DNA libraries using a novel, efficient and adaptable barcoding strategy called Post Amplification Ligation-Mediated ( PALM). PALM barcoding is performed as the very last step of library preparation, eliminating a potential barcode-induced bias and allowing the flexibility to synthesize as many barcodes as needed. We sequenced PALM barcoded micro RNA (miRNA) and DNA reference samples and evaluated the quantitative barcode-induced bias in comparison to the same reference samples prepared using the Illumina TruSeq barcoding strategy. The Illumina TruSeq small RNA strategy introduces the barcode during the PCR step using differentially barcoded primers, while the TruSeq DNA strategy introduces the barcode before the PCR step by ligation of differentially barcoded adaptors. Results show virtually no bias between the differentially barcoded miRNA and DNA samples, both for the PALM and the TruSeq sample preparation methods. We also multiplexed miRNA reference samples using a pre-PCR barcode ligation. This barcoding strategy results in significant bias
Sequence Variations of Full-Length Hepatitis B Virus Genomes in Chinese Patients with HBsAg-Negative Hepatitis B Infection
BACKGROUND: The underlying mechanism of HBsAg-negative hepatitis B virus (HBV) infection is notoriously difficult to elucidate because of the extremely low DNA levels which define the condition. We used a highly efficient amplification method to overcome this obstacle and achieved our aim which was to identify specific mutations or sequence variations associated with this entity. METHODS: A total of 185 sera and 60 liver biopsies from HBsAg-negative, HBV DNA-positive subjects or known chronic hepatitis B (CHB) subjects with HBsAg seroclearance were amplified by rolling circle amplification followed by full-length HBV genome sequencing. Eleven HBsAg-positive CHB subjects were included as controls. The effects of pivotal mutations identified on regulatory regions on promoter activities were analyzed. RESULTS: 22 and 11 full-length HBV genomes were amplified from HBsAg-negative and control subjects respectively. HBV genotype C was the dominant strain. A higher mutation frequency was observed in HBsAg-negative subjects than controls, irrespective of genotype. The nucleotide diversity over the entire HBV genome was significantly higher in HBsAg-negative subjects compared with controls (p = 0.008) and compared with 49 reference sequences from CHB patients (p = 0.025). In addition, HBsAg-negative subjects had significantly higher amino acid substitutions in the four viral genes than controls (all p<0.001). Many mutations were uniquely found in HBsAg-negative subjects, including deletions in promoter regions (13.6%), abolishment of pre-S2/S start codon (18.2%), disruption of pre-S2/S mRNA splicing site (4.5%), nucleotide duplications (9.1%), and missense mutations in "alpha" determinant region, contributing to defects in HBsAg production. CONCLUSIONS: These data suggest an accumulation of multiple mutations constraining viral transcriptional activities contribute to HBsAg-negativity in HBV infection.published_or_final_versio
Introduction to Khovanov Homologies. I. Unreduced Jones superpolynomial
An elementary introduction to Khovanov construction of superpolynomials.
Despite its technical complexity, this method remains the only source of a
definition of superpolynomials from the first principles and therefore is
important for development and testing of alternative approaches. In this first
part of the review series we concentrate on the most transparent and
unambiguous part of the story: the unreduced Jones superpolynomials in the
fundamental representation and consider the 2-strand braids as the main
example. Already for the 5_1 knot the unreduced superpolynomial contains more
items than the ordinary Jones.Comment: 33 page
Anomalous dependence of the c-axis polarized Fe B phonon mode with Fe and Se concentrations in FeTeSe
We report an investigation of the lattice dynamical properties in a range of FeTeSe compounds, with special emphasis on the c-axis polarized vibration of Fe with B symmetry, a Raman active mode common to all families of Fe-based superconductors. We have carried out a systematic study of the temperature dependence of this phonon mode as a function of Se and excess Fe concentrations. In parent compound FeTe, we observe an unconventional broadening of the phonon between room temperature and magnetic ordering temperature . The situation smoothly evolves towards a regular anharmonic behavior as Te is substituted for Se and long range magnetic order is replaced by superconductivity. Irrespective to Se contents, excess Fe is shown to provide an additional damping channel for the B phonon at low temperatures. We performed Density Functional Theory (DFT) ab-initio calculations within the local density approximation (LDA) to calcuate the phonon frequencies including magnetic polarization and Fe non-stoichiometry in the Virtual Crystal Approximation (VCA). We obtained a good agreement with the measured phonon frequencies in the Fe-deficient samples, while the effects of Fe excess are poorly reproduced. This may be due to excess Fe-induced local magnetism and low energy magnetic fluctuations that can not be treated accurately within these approaches. As recently revealed by neutron scattering and -SR studies, these phenomena occur in the temperature range where anomalous decay of the B phonon is observed, and suggests a peculiar coupling of this mode with local moments and spin fluctuations in FeTeSe
Salt-inducible kinases (SIKs) regulate TGFβ-mediated transcriptional and apoptotic responses
The signalling pathways initiated by members of the transforming growth factor-β (TGFβ) family of cytokines control many metazoan cellular processes, including proliferation and differentiation, epithelial-mesenchymal transition (EMT) and apoptosis. TGFβ signalling is therefore strictly regulated to ensure appropriate context-dependent physiological responses. In an attempt to identify novel regulatory components of the TGFβ signalling pathway, we performed a pharmacological screen by using a cell line engineered to report the endogenous transcription of the TGFβ-responsive target gene PAI-1. The screen revealed that small molecule inhibitors of salt-inducible kinases (SIKs) attenuate TGFβ-mediated transcription of PAI-1 without affecting receptor-mediated SMAD phosphorylation, SMAD complex formation or nuclear translocation. We provide evidence that genetic inactivation of SIK isoforms also attenuates TGFβ-dependent transcriptional responses. Pharmacological inhibition of SIKs by using multiple small-molecule inhibitors potentiated apoptotic cell death induced by TGFβ stimulation. Our data therefore provide evidence for a novel function of SIKs in modulating TGFβ-mediated transcriptional and cellular responses.</p
DNA topoisomerases participate in fragility of the oncogene RET
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
Quantum Convolutional Neural Networks
We introduce and analyze a novel quantum machine learning model motivated by
convolutional neural networks. Our quantum convolutional neural network (QCNN)
makes use of only variational parameters for input sizes of
qubits, allowing for its efficient training and implementation on realistic,
near-term quantum devices. The QCNN architecture combines the multi-scale
entanglement renormalization ansatz and quantum error correction. We explicitly
illustrate its potential with two examples. First, QCNN is used to accurately
recognize quantum states associated with 1D symmetry-protected topological
phases. We numerically demonstrate that a QCNN trained on a small set of
exactly solvable points can reproduce the phase diagram over the entire
parameter regime and also provide an exact, analytical QCNN solution. As a
second application, we utilize QCNNs to devise a quantum error correction
scheme optimized for a given error model. We provide a generic framework to
simultaneously optimize both encoding and decoding procedures and find that the
resultant scheme significantly outperforms known quantum codes of comparable
complexity. Finally, potential experimental realization and generalizations of
QCNNs are discussed.Comment: 12 pages, 11 figures. v2: New application to optimizing quantum error
correction codes, added sample complexity analysis, more details for
experimental realizations, and other minor revision
Direct measurement of local oxygen concentration in the bone marrow of live animals
Characterizing how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for therapeutic manipulation of stem cells1. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types2–4. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis5, expression of HIF-1 and related genes6, and staining with surrogate hypoxic markers (e.g. pimonidazole)6–8. Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow (BM) of live mice. Using two-photon phosphorescence lifetime microscopy (2PLM), we determined the absolute pO2 of the BM to be quite low (<32 mmHg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (~9.9 mmHg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change dramatically after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment
- …
