887 research outputs found

    Towards ERP success in SMEs through business process review prior to implementation

    Get PDF
    Purpose – ERP systems are not the exclusive concern of large companies anymore. More and more small and medium sized enterprises (SMEs) are now engaging with the implementation and exploitation of this type of system. However, reports of ERP failure are numerous and frequent. Very often, this failure results from technical and implementation problems. But even more frequently, it is due to lack of preparation, by the companies themselves, for the implementation process. The purpose of the study reported in this paper was to identify and explore ways in which SMEs may need to prepare themselves before implementing ERP systems. Design/methodology/approach – The research took a Cypriot SME as a case study and adopted an inductive approach supported by in-depth interviews as the main method of data collection. The qualitative data collected were analysed by using a thematic analysis approach. Subsequently, a rich picture and concept maps were used to represent the findings generated. Findings – The study identified that business deficiencies and problems, which can impact potential ERP adoption and usage in SMEs, can be localised across business processes boundaries, such as sales order processing, stock control, and bill of materials management, etc. These business problems were found to be attributed to a variety of organisational, technical and human-related reasons. Therefore, this study established that in order to implement ERPs successfully, organisations may require changes in people's work practices and understanding of technology, ownership and control of business processes, as well as organisational wide policies. Research limitations/implications – This study contributes to the knowledge of ERP preparation and business process improvement in SMEs. Practical implications – The findings of the paper provide useful insights for both academic and practitioners who are thinking of implementing ERP systems. The paper contributes to the body of literature on issues that SMEs may need to reflect upon before embarking in a costly and resource intensive process of ERP implementation. Originality/value – Business process improvement is traditionally considered as the result of an ERP project phase. This is how the large majority of the academic literature and the totality of marketing information by ERP vendors portray it. In fact, the reality of practice shows a different scenario with frequent reports of failure and inadequate ERP implementation. This paper aims at breaking with this myth, by proposing that ERPs cannot resolve the large variety of deficient business processes and internal problems that may exist in SMEs. Therefore, this study argues that SMEs need to prepare in advance by engaging in business process reviews prior to the ERP implementation that is engaging in a pre-implementation or preparation phase

    Baryon Number Fluctuation and the Quark-Gluon Plasma

    Get PDF
    We show that ωB\omega_B or ωBˉ\omega_{\bar B}, the squared baryon or antibaryon number fluctuation per baryon or antibaryon, is a possible signature for the quark-gluon plasma that is expected to be created in relativistic heavy ion collisions, as it is a factor of three smaller than in an equilibrated hadronic matter due to the fractional baryon number of quarks. Using kinetic equations with exact baryon number conservation, we find that their values in an equilibrated matter are half of those expected from a Poisson distribution. Effects due to finite acceptance and non-zero net baryon number are also studied.Comment: discussion and references added, version to appear in PR

    Crystal structure of Cu-Sn-In alloys around the {\eta} phase field studied by neutron diffraction

    Get PDF
    The study of the Cu-Sn-In ternary system has become of great importance in recent years, due to new environmental regulations forcing to eliminate the use of Pb in bonding technologies for electronic devices. A key relevant issue concerns the intermetallic phases which grow in the bonding zone and are determining in their quality and performance. In this work, we focus in the {\eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 to 25 at.%, quenched from 300\degreeC. The alloys were characterized by scanning electron microscopy, probe microanalysis and high-resolution neutron diffraction. The Rietveld refinement of neutron diffraction data allowed to improve the currently available model for site occupancies in the hexagonal {\eta}-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data is reported in the ternary Cu-Sn-In {\eta}-phase as a function of composition, information that is of fundamental technological importance as well as valuable input data for ongoing modelisations of the ternary phase diagram.Comment: 8 pages, 10 figure

    Manifestation of three-body forces in three-body Bethe-Salpeter and light-front equations

    Full text link
    Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange-bosons in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.Comment: 24 pages, 8 figures, submitted in Few-Body System

    An In Vitro Barrier Model of the Human Submandibular Salivary Gland Epithelium Based on a Single Cell Clone of Cell Line HTB-41: Establishment and Application for Biomarker Transport Studies

    Get PDF
    The blood–saliva barrier (BSB) consists of the sum of the epithelial cell layers of the oral mucosa and salivary glands. In vitro models of the BSB are inevitable to investigate and understand the transport of salivary biomarkers from blood to saliva. Up to now, standardized, cell line-based models of the epithelium of the submandibular salivary gland are still missing for this purpose. Therefore, we established epithelial barrier models of the submandibular gland derived from human cell line HTB-41 (A-253). Single clone isolation resulted in five different clones (B2, B4, B9, D3, and F11). Clones were compared to the parental cell line HTB-41 using measurements of the transepithelial electrical resistance (TEER), paracellular marker permeability assays and analysis of marker expression for acinar, ductal, and myoepithelial cells. Two clones (B9, D3) were characterized to be of acinar origin, one clone (F11) to be of myoepithelial origin and one isolation (B4) derived from two cells, to be presumably a mixture of acinar and ductal origin. Clone B2, presumably of ductal origin, showed a significantly higher paracellular barrier compared to other clones and parental HTB-41. The distinct molecular identity of clone B2 was confirmed by immunofluorescent staining, qPCR, and flow cytometry. Experiments with ferritin, a biomarker for iron storage, demonstrated the applicability of the selected model based on clone B2 for transport studies. In conclusion, five different clones originating from the submandibular gland cell line HTB-41 were successfully characterized and established as epithelial barrier models. Studies with the model based on the tightest clone B2 confirmed its suitability for transport studies in biomarker research

    One-phonon coherent neutron scattering from certain polycrystalline materials

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32012/1/0000054.pd

    Exploring passenger rail markets using new station catchment size and shape metrics

    Get PDF
    This paper presents a novel spatial market segmentation method to determine key user groups of a train station (such as gender, age and access mode), based on the size and shape of the station catchment area of each group. Two new indices–area ratio and composite ratio–are developed to quantify the importance of user groups for a train station. This method is applied to identify key user groups at seven train stations in Perth, Western Australia. The study offers a new way to explore the travel behaviour of train users and provides insights for rail transport planning and marketing

    Electroactive biofilms: new means for electrochemistry

    Get PDF
    This work demonstrates that electrochemical reactions can be catalysed by the natural biofilms that form on electrode surfaces dipping into drinking water or compost. In drinking water, oxygen reduction was monitored with stainless steel ultra-microelectrodes under constant potential electrolysis at )0.30 V/SCE for 13 days. 16 independent experiments were conducted in drinking water, either pure or with the addition of acetate or dextrose. In most cases, the current increased and reached 1.5–9.5 times the initial current. The current increase was attributed to biofilm forming on the electrode in a similar way to that has been observed in seawater. Epifluorescence microscopy showed that the bacteria size and the biofilm morphology depended on the nutrients added, but no quantitative correlation between biofilm morphology and current was established. In compost, the oxidation process was investigated using a titanium based electrode under constant polarisation in the range 0.10–0.70 V/SCE. It was demonstrated that the indigenous micro-organisms were responsible for the current increase observed after a few days, up to 60 mA m)2. Adding 10 mM acetate to the compost amplified the current density to 145 mA m)2 at 0.50 V/SCE. The study suggests that many natural environments, other than marine sediments, waste waters and seawaters that have been predominantly investigated until now, may be able to produce electrochemically active biofilm

    'Mu-Tau' symmetry, tribimaximal mixing and four zero neutrino Yukawa textures

    Get PDF
    Within the type-I seesaw framework with three heavy right chiral neutrinos and in the basis where the latter and the charged leptons are mass diagonal, a near `mu-tau' symmetry in the neutrino sector is strongly suggested by the neutrino oscillation data. There is further evidence for a close to the tribimaximal mixing pattern which subsumes `mu-tau' symmetry. On the other hand, the assumption of a (maximally allowed) four zero texture in the Yukawa coupling matrix Y_nu in the same basis leads to a highly constrained and predictive theoretical scheme. We show that the requirement of an exact `mu-tau' symmetry, coupled with observational constraints, reduces the `seventy two' allowed textures in such a `Y_nu' to 'only four' corresponding to just two different forms of the light neutrino mass matrix `m_nu'. The effect of each of these on measurable quantities can be described, apart from an overall factor of the neutrino mass scale, in terms of two real parameters and a phase angle all of which are within very constrained ranges. The additional input of a tribimaximal mixing reduces these three parameters to `only one' with a very nearly fixed value. Implications for both flavored and unflavored leptogenesis as well as radiative lepton flavor violating decays are discussed. We also investigate the stability of these conclusions under small deviations due to renormalization group running from a high scale where the four zero texture as well as `mu-tau' symmetry or the tribimaximal mixing pattern are imposed.Comment: Typographical changes,accepted for publication in JHE

    Interchange Slip-Running Reconnection and Sweeping SEP Beams

    Get PDF
    We present a new model to explain how particles (solar energetic particles; SEPs), accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be traveling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radii, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth
    corecore